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PREFACE

Skyrmions representing classical solutions to non-linear sigma model were originally introduced in nuclear physics
to be identified with nucleons. Though the relevance of skyrmions to nuclear physics remains obscure, their existence
is firmly established in quantum Hall physics. Namely, charged excitations observed in quantum Hall systems carry
nontrivial spin textures described by skyrmions. Besides, quantum Hall skyrmions are endowed with such an utterly
mathematical and fancy feature as the non-commutative geometry. This circumstance turns quantum Hall systems
into the only cases where the ideas of non-commutative geometry come true in a real physical phenomena.

Quantum Hall effect carries an appealing opportunity of interplay between condensed matter physics and particle
physics. Many constructions which are associated mostly with field-theoretic formalism find successful applications
in quantum Hall systems. Therefore, alongside with particle physics, the quantum Hall physics represents alterna-
tive and fertile soil for demonstrating and teaching various tools of quantum field theory. In particular, one encoun-
ters the method of second quantization, basics of non-commutative geometry, W- algebras, Grassmannian fields with
their non-commutative counterparts included, topological considerations, spontaneous symmetry breaking and other
constructions widely employed in modern theoretical and mathematical physics. These topics are all introduced and
exploited in the given lectures within the framework of quantum Hall skyrmions.

Problems supplied in the end of each chapter will help to develop and enhance the skills of practical calculations.
Recommended references:

• Z.F. Ezawa, "Quantum Hall Effects: Field Theoretical Approach and Related Topics" (WS, Singapore 2008).

• M.O. Goerbig, "Quantum Hall Effects" (lecture notes), arXiv:0909.1998v2 (2009).

• J.A. Harvey, "Komaba Lectures on Non-commutative Solitons and D-Branes", arXiv:hep-th/0102076v1 (2001).

Derivations of some formulae in the text employ the following table of integrals and series

• A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, "Integrals and Series" (in Russian), vol.2 (FizMatLit 2003).



Chapter 1

INTRODUCTION

Quantum Hall (QH) effect is one of those rare physical phenomena where the quantum laws of nature can be observed
on macroscopic scale. Below we first comment on the classical picture of the Hall effect and then pass to its quantum
counterpart discovered by von Klitzing et al. in 1980.

1.1 Classical Hall Effect

The Hall effect implies that planar electrons subject to in-plane electric field E = (Ex,E y,0) and orthogonal magnetic
field B = (0,0,B⊥) flow along the direction orthogonal to E. In that case the net Lorentz force vanishes E+(v×B)= 0,
and electrons travel with constant drift velocity v= |B|−2(E×B). Assuming the planar density of electrons is ne, the
linear density of the in-plane current is found to be

J= (ene/B2)(E×B) ⇒ Jm = (ene/B⊥)εmnEn. (1.1)

On the other hand the density of current and the electric field are interrelated as

Jx =σxxEx +σxyE y, (1.2a)

Jy =σyxEx +σyyE y, (1.2b)

where σmn is the conductivity tensor. The inverse of these relations is given by

Ex = %xxJx +%xyJy, (1.3a)

E y = %yxJx +%yyJy, (1.3b)

where %mn = (σ−1)mn is called the resistivity tensor.
Comparing (1.2) and (1.3) to (1.1) we find the conductivity and resistivity tensors for the Hall effect to be

σ=
 0 σH

−σH 0

 ⇒ % =
 0 −1/σH

1/σH 0

 (1.4)

where σH is given by
σH = ene

B⊥
(1.5)

and is referred to as the Hall conductivity. Remark, that σH depends linearly on the ratio ne/B⊥.

1.2 Quantum Hall Effect

The device where the quantum Hall effect was detected is shown schematically on figure 1.1. The system is subject
to orthogonal magnetic field B = (0,0,B⊥). Injecting the current J = (0, Jy,0) in y-direction, the longitudinal (VL) and
Hall (VH) voltages are measured. These are related to the in-plane electric fields as VH = Exdx and VL = E ydy where
dx,y are the linear sizes of a sample. Then the relations (1.3) can be rewritten as VH = %xyJy and VL = (dy/dx)%yyJy,
where from %xy and %yy, hence σxy and σyy can be determined.

Measurements at low temperatures (∼ 4K) carried out by von Klitzing et al. indicated that in contrast to classical
picture the Hall conductivity as a function of ne/B⊥ exhibits plateaux (flat regions) as shown in figure 1.1. The corre-
sponding values in units of (2πħ)−1e2 were measured to be integers with the accuracy of about 10−8 thus indicating
the quantization of Hall conductivity. This phenomenon was named as the integer quantum Hall effect.
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Later on the QH plateaux were found at fractional values of (2πħ/e2)σH with odd denominators, and such cases
are referred to as the fractional quantum Hall effects. The later are much more complicated phenomena compared
to integer quantum Hall effect, and the corresponding second quantization approach is still the pending challenge.

Must be pointed out that the first indications of these phenomena had been appeared in earlier theoretical studies
by Ando, Matsumoto and Uemura (1975), and also in the experiments by Kawaji and Wakabayashi (1976), however
none of those groups had apparently foreseen this was the quantization effect.

ä
ä
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ä
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B

2πħ
e2 σH
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1 ν≡ 2πħ
e2

ene

B⊥

1 2 3

Fig. 1.1: Left panel: quantum Hall device. Electric current J is injected in y-direction and the voltages VH and VL are measured.
Right panel: Hall conductivity σH versus ne/B⊥. Black curve corresponds to classical theory, while the red curve depicts
the Hall conductivity at low temperatures as found by von Klitzing et al. Flat regions represent the quantum Hall states
where the Hall conductivity σH ≡ Jy/VH is quantized in units of (2πħ)−1e2, while the longitudinal one vanishes σyy = 0.
Here the variable ν≡ (2πħ/e2)(ene/B⊥) is employed, since it is more natural in quantum considerations.

Resistance and Resistivity in 2D

Resistance of a 3D conductor can be determined by R = V
J after measuring the voltage V and current J. Then the

resistivity % is determined by %= W
L R where L is the distance between the points the voltage was measured, and W is

the cross section orthogonal to the direction of electric current. Obviously, the coefficient W
L takes the dimensionality

of length. In d dimensions the quantity L is still the distance, but the dimensionality of cross section is (length)d−1

so the coefficient W
L takes the one of (length)d−2. In this light the 2D conductor is a special case, since the resistance

and resistivity are of same dimensionality. Nevertheless, the length L and the width (cross section) W may alter the
relation between R and %. Situation becomes interesting in the case of the Hall effect: the length L along which the
voltage is measured coincides with the cross section because the current flows in direction orthogonal to the electric
field. Therefore, we have W

L = 1, i.e. the resistance and resistivity coincide % = R. This makes the Hall resistance
(conductance) insensitive to sample sizes and results the extremely high precision (10−8) of the Hall quantization
phenomenon. The corresponding quantity is nowadays accepted as the resistance standard

RK ≡ 2πħ
e2 = 25812.8074555Ω (1.6)

and is referred to as the Klitzing constant.

Impurities and Plateaux

In a pure sample under homogeneous orthogonal magnetic field electrons are organized in Landau levels. Each
Landau level is highly degenerated and the density of states is given by

D(E)= eB
2πħ

∞∑
n=0

δ(E−En) (1.7)

where En is the energy of n’th Landau level, and eB > 0 is assumed.
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D(E) D(E)

Fig. 1.2: Density of states in pure sample (left) and in the one with impurities (right).

The corresponding eigenstates are all extended states allowing electrons to freely travel across the entire sample.
Therefore each electron contributes to electric current, i.e. increasing the electron density, the Hall conductivity must
also increase. However this is not the case, and we observe wide plateaux (flat regions) around the integer values of ν
as depicted in figure 1.1. Such a behaviour can be explained by the presence of impurities in real samples. Impurities
modify the eigenstate content of idealized pure samples, and the density of states are no longer of δ-type, but become
broadened, as shown in the right panel of figure 1.2. The density of states is now localized around E = En, with its
central (red) regions representing extended states and tails (gray regions) corresponding to localized states. The later
are the states where electrons are trapped by impurities, hence can reach only finite areas of a sample and therefore
producing no contribution to a macroscopic electric current.

Assume now we start doping the empty system (ne = 0) by electrons. Initially electrons will occupy the low-lying
energy states which are localized (lowest gray), hence the initial vanishing conductance will acquire no gain until
the localized sub-band is completely filled. Further increase of ne causes electrons start occupying extended states
(red sub-band), the conductance becomes nonvanishing, and keeps increasing until the sub-band is filled out. This
results in jump of conductance by an amount of (2πħ)−1e2. Adding more electrons, we find no change in conductance,
until the next gray sub-band (localized states) is filled, thus producing plateau, and so on.

Edge States

Edge states represent yet another remarkable feature of quantum Hall physics. We comment on semi-classical
picture of this issue and then bring its quantum-mechanical explanation. The first one is based on skipping orbits:
performing rotational movement, electrons near edges bounce back after colliding with boundaries, so the net effect
is the drift motion, hence the macroscopic current along the edges. The same time, electrons in the bulk rotate along
closed orbits thus giving no such contribution.

Quantum-mechanical treatment can be developed by considering the system in restricted geometry, say with
− 1

2W É x É+ 1
2W and −∞< y <+∞. In that case the system enjoys translational symmetry along y direction, so the

wave functions can be labeled by the corresponding momentum k. Due to the restricted geometry, the Schrödinger
equation must be supplied by certain boundary conditions which determine the shape of dispersion E(k). Imposing
Dirichlet boundary conditions ψ(± 1

2W , y)= 0 the resulted energy dispersion takes the form shown in the right panel
of figure 1.3. Energy levels comprise flat segments and become bent at certain values of k. Energy gaps between the
flat segments are precisely the cyclotron energy ħω. Increasing the width W of a system the flat segments become
wider and in the limit of W =∞ reproduce the standard Landau levels. One-particle states with the values of k from
the flat segment are localized in the bulk, while those from one bent region are localized at x =− 1

2W and those from
the other are localized at x =+ 1

2W . Remark now, that the group velocity, hence the electric current, carried by one-
particle state with momentum k is proportional to E′(k). Consequently the bulk states (flat segment) carry no electric
current due to E′(k)= 0, while the edge states (bent segments) comprise finite currents due to E′(k) 6= 0. Remark also
that the currents at opposite edges flow in opposite directions, as already pointed out within semi-classical picture.
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E(k)

k

Fig. 1.3: Left: Semi-classical (skipping orbit) picture of edge currents. Bulk electrons rotate along closed orbits (blue) and do not
contribute to macroscopic current. Electrons near edges bounce back after colliding with boundaries (red) and produce
macroscopic currents localized along edges. Right: Energy dispersion E(k) of electrons in homogeneous magnetic field
and confined geometry (finite x-size).

Multicomponent Quantum Hall Systems

Most of the interesting effects take place in multicomponent QH systems where electrons carry internal degrees
of freedom. The simplest example is the monolayer QH system where the internal degrees of freedom correspond to
electron spin. Provided the system is subject to strong external magnetic field, electrons are organized in Landau
levels with large level-splitting energy gap. For electrons in free space with the g-factor of 2 the Zeeman splitting is
precisely the Landau level splitting. Would this be the case in quantum Hall samples, the energy for flipping spins
would be large. Therefore, the spin degree of freedom would be frozen, hence electrons would be effectively spinless.
In the solid state environment of 2-dimensional electron gas, two factors make the effective g-factor much smaller in
many superconductors, particularly in GaAs samples, in which almost all quantum Hall studies have been done. The
first one is the small effective mass which increases the cyclotron energy by a factor of approximately 15. The other
factor is the spin-orbit coupling causing spins to tumble and reducing their coupling to external magnetic field by
roughly a factor of 4. Therefore the ratio of Zeeman to cyclotron splitting is reduced from unity to about 0.02 in GaAs.
Consequently the spin fluctuations become important dynamical degree of freedom leading to variety of interesting
effects.

One may think that the orientations of electron spins would be random in the absence of Zeeman term (g = 0),
however this is not the case. Exchange Coulomb interaction results in spin coherence so that in the ground state all
spins become spontaneously polarized along an arbitrary direction. This implies the spontaneous breakdown of the
SU(2) spin symmetry, producing a gapless (Goldstone) mode. These are the low energy excitations referred to as spin
waves. The system is called the quantum Hall ferromagnet. When the Zeeman coupling is turned on, the up-spin
state becomes realized. The spin waves are no longer gapless, though are still the low energy excitations.

Quasiparticles (charged excitations) are topological solitons. They are vortices in spin frozen theory, as advocated
by Laughlin, but are skyrmions in QH ferromagnets. Quantum Hall skyrmion is a unity of topologically nontriv-
ial spin texture S(r) and of spatially modulated particle density ρ(r). Quantum Hall skyrmions differ in several
respects from standard skyrmions known in nuclear physics. The main difference is that QH skyrmions are of non-
commutative nature and as an imprint of this fact they necessarily carry the electric charge.

Skyrmion excitations have been confirmed in numerous experiments by measuring the amount of reversed spins.
Application of parallel magnetic field B∥ is an indispensable method for examining the role of the spin degrees of
freedom, since it separates Zeeman and Coulomb interactions. Zeeman energy depends on the total magnetic field
B = (B2

⊥+B2
∥ )1/2, while the Coulomb energy depends only on the component B⊥ orthogonal to the sample. The number

of reversed spins is estimated by the increase of the Zeeman energy with the Coulomb energy being fixed.
Importance of skyrmions in connection with QH physics was theoretically recognized first in the effective Chern-

Simons theory, then studied in the Hartree-Fock approximation and also by numeric analysis. In the given lectures
we present the microscopic (second quantization) approach to quantum Hall skyrmions.



Chapter 2

PLANAR ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD

Provided the system under consideration is subject to homogeneous magnetic field, the Landau quantization is an
inevitable ingredient of our account. For the sake of completeness we first recapitulate the details of classical picture.

2.1 Classical Mechanics

Classical motion of an electron in orthogonal homogeneous magnetic field B = (0,0,B) is governed by the equations

mv̇x =+eBvy, (2.1a)

mv̇y =−eBvx, (2.1b)

which after integration give

vx = C sin(ωt−φ), (2.2a)

vy = C cos(ωt−φ), (2.2b)

where ω= eB/m is the cyclotron frequency. Integrating once again we come to

x = Xx−(C/ω)cos(ωt−φ)︸ ︷︷ ︸
Rx

, (2.3a)

y= X y+(C/ω)sin(ωt−φ)︸ ︷︷ ︸
Ry

, (2.3b)

where X = (Xx, X y) is referred to as the guiding center coordinate specifying the location of the circle along which
the electron circulates. Coordinate of the electron relative to the center is denoted by R = (Rx,Ry) with |R| = |C/ω|.
Obviously, the absolute coordinate is given by r = R+X . Mind that the energy of an electron depends only on |R| but
not on X .

e

X

R

x

y

Fig. 2.1: Classical electron performing circular motion around the guiding centre.
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2.2 Quantum Mechanics

We comment on quantum-mechanical picture of an electron in magnetic field. Quantum-mechanical kinetic Hamil-
tonian is given by

H = 1
2me

(p− eA)2, (2.4)

where p =−iħ(∂x,∂y) is the momentum operator, and A = (Ax, A y) describes the homogeneous orthogonal magnetic
field B = ∂x A y −∂y Ax.

For our purposes it is more convenient to work in symmetric gauge A = 1
2 B(−y, x). Then the Hamiltonian (2.4)

takes the form
H = 1

2me
(−iħ∂x + 1

2 eBy)2 + 1
2me

(−iħ∂y − 1
2 eBx)2. (2.5)

We assume eB > 0 and introduce the so called magnetic length ` as follows

1
`2 = eB

ħ . (2.6)

We then rewrite (2.5) as

H = ħ2

2me`4 ( 1
2 x+ i`2∂y)2 + ħ2

2me`4 ( 1
2 y− i`2∂x)2. (2.7)

Remind that in classical picture the energy depends only on relative coordinates R but not on X . In this light we
identify the two operators located in square braces in (2.7) with relative coordinate operators

Rx = 1
2 x+ i`2∂y,

Ry = 1
2 y− i`2∂x.

(2.8)

The classical relation r = R+ X must be held also for the corresponding quantum-mechanical operators. Conse-
quently, we guess the guiding centre operators as

Xx = 1
2 x− i`2∂y,

X y = 1
2 y+ i`2∂x.

(2.9)

Now the kinetic Hamiltonian is rewritten as

H = ħ2

2me`4 R2 . (2.10)

Commutation relations among R and X are given by

[Rx,Ry]=+i`2, (2.11a)

[Xx, X y]=−i`2, (2.11b)

[Ri, X j]= 0. (2.11c)

indicating that the pairs (Rx,Ry) and (Xx, X y) form the two independent oscillator algebras.
Introduce the ladder operators

a = Rx + iRyp
2`

, a† = Rx − iRyp
2`

, ⇒ [a,a†]= 1, (2.12a)

b = Xx − iX yp
2`

, b† = Xx + iX yp
2`

, ⇒ [b,b†]= 1. (2.12b)

Then the kinetic Hamiltonian appears as

H =ħω(a†a+ 1
2 ), ω= ħ

me`2 . (2.13)
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Eigenstates are classified by two integers associated with two independent oscillator algebras and look as

|m,n〉 = ||m〉〉⊗ |n〉 =
[

(a†)m
p

m!
||0〉〉

]
⊗

[
(b†)n
p

n!
|0〉

]
, (2.14)

where ||0〉〉 and |0〉 are defined by a||0〉〉 = 0 and b|0〉 = 0 respectively.
Eigenvalues are given by

H|m,n〉 = ħω(m+ 1
2 )|m,n〉, (2.15)

and electrons are organized in the equidistant energy levels called the Landau levels.

0 1 2 3 n

m

2

1

0

ħω

Fig. 2.2: Electrons in homogeneous magnetic field are organized in Landau levels. Each circle denotes the quantum states labelled
by a pair (m,n) where m specifies the energy level. Each Landau level is degenerated and the quantum states within a
given level are distinguished by the values of n.

Provided the Hamiltonian (2.13) commutes with b and b†, each Landau level is highly degenerated. The power of
degeneracy is characterized by the maximal affordable density of identical electrons within each level. Later on we
show this density is given by ρL ≡ (2π`2)−1.

Magnetic fields characteristic for quantum Hall regime are strong enough so that the Landau gap ħω becomes
large compared to other energy scales related with Coulomb and Zeeman interactions. Then the excitations across
the Landau levels are suppressed and electrons become confined to the lowest Landau level (LLL). Degrees of free-
dom associated with the algebra (2.11a) become frozen, and the kinematic Hamiltonian is quenched. Consequently,
kinematics of the system becomes governed solely by the algebra (2.11b), signifying that the electron coordinates do
not commute among each other. This is the manifestation of non-commutativity at the level of quantum mechanics.

For the wave function of an electron in the LLL we have

a|0,n〉 = 0 =⇒
[

1
2 (x+ i y)+`2(∂x + i∂y)

]
ψLLL(r)= 0. (2.16)

Introducing
p

2z = (x+ i y)/` and
p

2 z̄ = (x− i y)/` we rewrite (2.16) as[
z
2
+ ∂

∂z̄

]
ψLLL(z̄, z)= 0. (2.17)

Searching for ψLLL(z̄, z) in the form
ψLLL(z̄, z)= exp(− 1

2 z̄z) f (z̄, z) (2.18)

we come to
∂

∂z̄
f (z̄, z)= 0, (2.19)

i.e. f (z̄, z) must be the function of z only.
Therefore the LLL eigenstate |0,n〉 in r-representation can be written as

〈r|0,n〉 = exp(− 1
2 z̄z) fn(z), (2.20)

and due to b|0,0〉 = 0 we must have[
z̄
2
+ ∂

∂z

]
exp(− 1

2 z̄z) f0(z)= 0 =⇒ ∂

∂z
f0(z)= 0. (2.21)



Chapter 2. Planar Electron in a Homogeneous Magnetic Field 10

Consequently (including the normalization factor)

〈r|0,0〉 = 1p
2π`2

exp(− 1
2 z̄z). (2.22)

Acting on this function repeatedly by the operator b† we obtain

〈r|0,n〉 = 1p
n!

〈r|(b†)n|0,0〉 = 1p
n!

[
z
2
− ∂

∂z̄

]n 1p
2π`2

exp(− 1
2 z̄z)=

= zn
p

2π`2n!
exp(− 1

2 z̄z)= 1p
2π`2n!

[
x+ i yp

2`

]n

e−
1
4 `

−2(x2+y2). (2.23)

Mind that the wave functions 〈r|0,n〉 are orthogonal but do not form the complete set because the states 〈r|m,n〉
with m > 0 are absent. For this reason electrons in the lowest Landau level cannot be localized to a point but are
smeared over some minimal area in the plane. This area is related to the order of degeneracy of Landau levels.

In order to calculate these characteristics we consider the probability distribution for the wave function in the
lowest Landau level. It appears as

|〈r|0,n〉|2 = 1
2π`2n!

[
r2

2`2

]n

e−
1
2 `

−2r2
(2.24)

and is localized along the circle of radius rn =p
2n`. The ones for n = 0 and n = 1 are shown in figure 2.3.

x
y

x
y

Fig. 2.3: |〈r|0,0〉|2 (left), |〈r|0,1〉|2 (right).

In order to calculate the order of degeneracy consider a disc of the radius between rN and rN+1. Then the peaks
of |〈r|0,n〉|2 with n = 0,1,2, . . . , N fall in the interior of the disc while the ones of |〈r|0,n〉|2 with n > N are beyond.
Thus the N+1 states occupy the area A with 2π`2N <A< 2π`2(N+1). The area per quantum state is given by A/N
and in the limit of infinitely large disc (N →∞) takes the value A/N → 2π`2. Then the quantity

ρL ≡ 1
2π`2 (2.25)

measures the order of degeneracy of LLL by specifying the maximal density of electrons that can be accommodated
in there.

Problems

(2.a) Verify the commutation relations (2.11) by use of (2.8) and (2.9).

(2.b) Verify the wave functions (2.23) are orthonormal.



Chapter 3

BASICS OF NON-COMMUTATIVE GEOMETRY

Noncommutativity occurs in planar electron systems where the physics develops in the lowest Landau level (LLL).
Confinement of electrons to the LLL results in the non-commutativity of electron position operators.

Original idea of non-commutative coordinates dates back to Heisenberg, who employed this construction for avoid-
ing the electron self-energy singularities. Subsequent developments led to elaboration of the non-commutative mul-
tiplication law introduced first by Gröenewold (1946) and then by Moyal (1949).

The essence of non-commutative geometry becomes clearer when formulated in algebraic terms. Commutativity
of a plane implies the algebra of smooth functions over the plane with the algebraic operation to be the ordinary
product. The plane with the coordinates r ≡ (x, y) is said to be non-commutative if the algebraic operation is defined
by the Groenewold-Moyal product

f1(r)? f2(r)= f1(r) e−(i/2)θεn j
←−
∂n

−→
∂j f2(r), (3.1)

where
−→
∂ stands for the derivative acting on the right, while

←−
∂ acts on left. In this sense the formal expression (3.1)

is understood as the following power expansion

f1? f2 = f1 f2 + 1
1! (− i

2θ)1εn j(∂n f1)(∂ j f2)+ 1
2! (− i

2θ)2εmiεn j(∂m∂n f1)(∂i∂ j f2)+·· · , (3.2)

where the quantity θ is the parameter determining the "magnitude" of non-commutativity.
The non-commutative product (3.1) is the only possible deformation of ordinary (commutative) product satisfying

the associativity
[ f1(r)? f2(r)]? f3(r)= f1(r)? [ f2(r)? f3(r)]. (3.3)

Obviously, for θ = 0 it is reduced back to the ordinary product.
From (3.1) we find

x? y− y? x =−iθ, (3.4)

indicating that the coordinates of a plane are non-commutative with respect to the algebraic multiplication law. In
this scope they resemble the operators X = (Xx, X y) which form the oscillator algebra (with θ = `2)

Xx X y − X yXx =−iθ. (3.5)

The mapping r 7→ X generates the one of a function f (r) into the corresponding operator O[ f ] referred to as the
Weyl operator. It is given by

O[ f ]= 1
2π

∫ [
1

2π

∫
f (r)e−ikrdr︸ ︷︷ ︸

f (k)

]
eikX dk, (3.6)

where the quantity in square braces is the Fourier transformation of f (r). The function f (r) is usually referred to as
the symbol of O[ f ].

Let O[ f1] and O[ f2] be the Weyl operators of f1(r) and f2(r) respectively, and consider the product

O[ f1]O[ f2]=
[

1
2π

∫
f1(k)eikX dk

][
1

2π

∫
f2(k′)eik′X dk′

]
=

= 1
4π2

∫
f1(k) f2(k′)eikX eik′X dkdk′. (3.7)

Due to (3.5) we have [kX ,k′X ] = k∧k′ where k∧k′ is the c-number. Then the Baker-Campbell-Hausdorff formula
yields

eikX eik′X = ei(θ/2)k∧k′
ei(k+k′)X . (3.8)
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Using this in (3.7) and shifting the integration variable k → k−k′ we pass to

O[ f1]O[ f2]= 1
4π2

∫ {∫
f1(k−k′) f2(k′)ei(θ/2)k∧k′

dk′
}

eikX dk. (3.9)

On the other hand calculating the Fourier transform of f1(r)? f2(r) we find∫
e−ikr

{
f1(r)? f2(r)

}
dr =

∫
e−ikr

{[
1

2π

∫
f1(k′)e+ik′rdk′

]
?

[
1

2π

∫
f2(k′′)e+ik′′rdk′′

]}
dr =

= 1
4π2

∫
e−ikr f1(k′) f2(k′′)

{
e+ik′r? e+ik′′r

}
dk′dk′′dr. (3.10)

For calculating the non-commutative product in square braces we use ∂neikr = ikneikr and obtain

e+ik′r? e+ik′′r = e+ik′r e−(i/2)θεn j
←−
∂n

−→
∂j e+ik′′r = e+ik′r e+(i/2)θk′∧k′′

e+ik′′r . (3.11)

Substituting (3.11) into (3.10) and integrating over r we pass to∫
e−ikr

{
f1(r)? f2(r)

}
dr = 1

4π2

∫
e−ikr f1(k′) f2(k′′)e+ik′r+(i/2)θk′∧k′′+ik′′rdk′dk′′dr =

=
∫

f1(k′) f2(k′′)e+(i/2)θk′∧k′′
dk′dk′′ 1

4π2

∫
e−i(k−k′−k′′)rdr︸ ︷︷ ︸
δ(k−k′−k′′)

=

=
∫

f1(k−k′′) f2(k′′)e+(i/2)θk∧k′′
dk′′. (3.12)

Comparing the integrand of (3.9) to (3.12) we write

O[ f1]O[ f2]= 1
2π

∫ [
1

2π

∫ {
f1(r)? f2(r)

}
e−ikrdr

]
eikX dk, (3.13)

where the right hand side is O[ f1 ? f2], as it follows from the definition (3.6). We thus obtain the important relation

O[ f1]O[ f2]=O[ f1 ? f2], (3.14)

which generalizes the interplay between (3.4) and (3.5).
Weyl operators act in the space of states where the basis states can be set up by use of ladder operators

b = Xx − iX yp
2θ

, b† = Xx + iX yp
2θ

, [b , b† ]= 1, (3.15)

which up to θ = `2 are in fact the ones already introduced by (2.12b).
Holomorphic basis is defined as

|n〉 = (b†)n
p

n!
|0〉, n = 0,1, . . . (3.16)

where |0〉 is the vacuum state b|0〉 = 0.
Using (3.15) and (3.16) we obtain

〈n|e+ikX |n+α〉 = (i`)α
p

n!
2α/2

p
(n+α)!

(kx + iky)αe−
1
4 `

2k2
Lα

n( 1
2`

2k2), (3.17)

where Lα
n is the generalized Laguerre polynomial. Then

Tr
[
eikX ]= ∞∑

n=0
〈n|eikX |n〉 = e−

1
4 `

2k2 ∞∑
n=0

Ln( 1
2`

2k2). (3.18)
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In order to estimate the right hand side we present it as
∞∑

n=0
Ln( 1

2`
2k2)= lim

t→1

∞∑
n=0

tnLn( 1
2`

2k2)= lim
t→1

1
1− t

e−
1
2

t
1−t `

2k2
, (3.19)

where t < 1 and the last equality holds due to (5.11.2.1) of Prudnikov vol. 2. Using this in (3.18) we obtain

Tr
[
eikX ]= lim

t→1

1
1− t

e−
1
4

1+t
1−t `

2k2 =


∞ k = 0

0 k 6= 0
(3.20)

thus resembling the Dirac’s delta. On the other hand we have∫
1

1− t
e−

1
4

1+t
1−t `

2k2
dk = 4π`−2

1+ t
t→1−→ 2π

`2 , (3.21)

what enables to put
Tr

[
eikX ]= 2π`−2δ(k). (3.22)

We use this relation to determine the Fourier transform f (k) from the Weyl operator O[ f ]. Write (3.6) as

O[ f ]= 1
2π

∫
f (k′)eik′X dk′. (3.23)

Multiplying this relation by e−ikX and taking trace we find

Tr
{

e−ikX O[ f ]
}
= 1

2π

∫
f (k′) Tr

{
e−ikX eik′X

}
dk′ =

= 1
2π

∫
f (k′)e−i(θ/2)k∧k′

Tr
{

e−i(k−k′)X
}
dk′ =

= 1
2π

∫
f (k′)e−i(θ/2)k∧k′

2π`−2δ(k−k′)dk′, (3.24)

where from we eventually come to
f (k)= `2Tr

{
e−ikX O[ f ]

}
. (3.25)

In the end we bring several relations to be employed later. Expanding Weyl operator in |n〉-basis we write

O[ f ]= ∑
mn

Omn[ f ]|m〉〈n|, (3.26)

where the matrix Omn[ f ] is given by
Omn[ f ]= 〈m|O[ f ]|n〉. (3.27)

The inversion formula (3.25) reads
f (k)= θ∑

mn
〈n|e−ikX |m〉Omn[ f ]. (3.28)

Summarizing, we have the chain of one-to-one mappings

f (r) ←→ O[ f ] ←→ Omn[ f ], (3.29)

accompanied by the ones among the multiplications laws

f1(r)? f2(r) ←→ O[ f1]O[ f2] ←→ ∑
j

Om j[ f1]O jn[ f2]. (3.30)

Also, we have the correspondence

∂m f (r) ←→ − i
θ
εmn

[
Xn ,O[ f ]

]
, (3.31)

which determines the differentiation in the space of Weyl operators.

Problems

(3.a) Employ the Fourier representation for δ(r) and show that δ(r)?δ(r)=π−2θ−2.

(3.b) Employ the ladder operators (2.15) and derive (3.17).



Chapter 4

FIELD THEORY IN THE LOWEST LANDAU LEVEL

Quantum field theory, or equivalently the formalism of second quantization is a powerful method for describing the
systems comprising many particles. This tool is especially helpful in the cases of finite particle densities like the one
under consideration.

4.1 Field Operators and Fock States

Introduce the electron field operator in the lowest Landau level

ψµ(r)=
∞∑

n=0
〈r|0,n〉cµ(n), (4.1)

where µ= 1,2, . . . , N describes the isospin (internal) degree of freedom. For illustrative simplicity we will use µ=↑,↓
(i.e. N = 2) from time to time. Further, 〈r|0,n〉 is the one-particle wave function in the LLL, and cµ(n) is the electron
annihilation operator. Its hermitian conjugate c†

µ(n) is the electron creation operator, and we have the standard
anticommutation relations {

cµ(m), c†
ν(n)

}= δµνδmn. (4.2)

These operators act in the space of Fock states which is built up starting from the Fock vacuum state |∅〉 (we use this
symbol in order to avoid confusion with one-particle vacuum state |0〉) defined as

cµ(n)|∅〉 = 0. (4.3)

Then the basis states of Fock space can be set up by multiple applications of creation operators c†
µ(n) to the Fock

vacuum. Some simple Fock states for N = 2 can be pictorially presented as follows

c†
↓(n)c†

↑(n)|∅〉 0 1 n−1 n n+1

c†
↓(n)c†

↑(n)|∅〉 0 1 n−1 n+1

c†
↑(n)c†

↓(n)|∅〉 0 1 n−1 n+1

c†
↑(n)c†

↓(n)|∅〉 0 1 n−1 n+1

Fig. 4.1: Operator c†
µ(n) creates an electron with polarization µ at site n. Each site can accommodate up to N electrons simulta-

neously (here N = 2).

As an instructive example later on we consider the particular case of the Fock state given by

|S〉 =
∞∏

n=0
c†
↑(2n)c†

↓(2n+1)|∅〉 * (4.4)
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In the final part of these lectures we will discuss the physically relevant Fock states

ground state |g〉 =

hole-excited state |h〉 =

electron-excited state |e〉 =

4.2 Relation to Many-Body Quantum Mechanics

We demonstrate how the Fock states are related to many-body quantum mechanical wave functions. For this purpose
we employ the case of a simple Fock state

|S〉 = c†
↑(m)c†

↓(n)|∅〉 (4.5)

with m < n. Pictorially this can be presented as

|S〉 = 0 m−1 m+1 n−1 n+1

i.e. all sites are empty except m’th and n’th.
Calculate the expectation value

Ψµν(r1,r2)≡ 〈∅|ψµ(r1)ψν(r2)|S〉. (4.6)

Substituting (4.1) we find

Ψµν(r1,r2)= 〈∅|
[ ∞∑

s=0
〈r1|0, s〉cµ(s)

][ ∞∑
t=0

〈r2|0, t〉cν(t)
]

c†
↑(m)c†

↓(n)|∅〉 =

=∑
st
〈r1|0, s〉〈r2|0, t〉〈∅|cµ(s)cν(t)c†

↑(m)c†
↓(n)|∅〉. (4.7)

Such matrix elements are usually calculated by use of cµ(m)|∅〉 = 0 after dragging annihilation operators through
the creation ones up to |∅〉. Using anticommutation relations (4.2) for cν(t)c†

↑(m) we find

〈∅|cµ(s)cν(t)c†
↑(m)c†

↓(n)|∅〉 = 〈∅|cµ(s)
[
δν↑δmt − c†

↑(m)cν(t)
]
c†
↓(n)|∅〉 =

= δν↑δmt〈∅|cµ(s)c†
↓(n)|∅〉−〈∅|cµ(s)c†

↑(m)cν(t)c†
↓(n)|∅〉. (4.8)

Performing the similar trick for cν(t)c†
↓(n) in the second term we pass to

〈∅|cµ(s)cν(t)c†
↑(m)c†

↓(n)|∅〉 = δν↑δmt〈∅|cµ(s)c†
↓(n)|∅〉−δν↓δnt〈∅|cµ(s)c†

↑(m)|∅〉, (4.9)

where the two-point averages 〈∅|cµ(s)c†
↓(n)|∅〉 and 〈∅|cµ(s)c†

↑(m)|∅〉 can be calculated by use of the same technique
and we come to

〈∅|cµ(s)cν(t)c†
↑(m)c†

↓(n)|∅〉 = δν↑δmtδµ↓δns −δν↓δntδµ↑δms, (4.10)

which substituted into (4.7) leads to

Ψµν(r1,r2)= δµ↓δν↑〈r1|0,n〉〈r2|0,m〉−δµ↑δν↓〈r1|0,m〉〈r2|0,n〉. (4.11)

This can be written also as a Slater determinant

Ψµν(r1,r2)=−
∣∣∣∣∣∣
δµ↑〈r1|0,m〉 δµ↓〈r1|0,n〉

δν↑〈r2|0,m〉 δν↓〈r2|0,n〉

∣∣∣∣∣∣ . (4.12)

Thus the quantum-mechanical many-body wave functions are comprised in second quantized Fock states and can be
extracted as

Ψµ1µ2···µN (r1,r2, . . . ,rN )= 〈∅|ψµ1 (r1)ψµ2 (r2) · · ·ψµN (rN )|S〉. (4.13)
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4.3 Physical and Core Fields

Second quantized operators describing observable quantities are the particle and isospin density operators

ρ(r)=ψ†(r)ψ(r), (4.14a)

Ia(r)= 1
2ψ

†(r)λaψ(r), (4.14b)

where λa are N ×N "Gell-Mann matrices" with a = 1,2, . . . , N2 −1, and N the amount of electron polarizations. For a
single layer spinning electrons we have N = 2 with µ=↑,↓, while for a double layer spinning electrons we have N = 4:
up-layer up-spin, up-layer down-spin, down-layer up-spin, down-layer down-spin.

The matrices λa satisfy the relations [
λa,λb

]= 2i fabcλc, (4.15a)

{
λa,λb

}= 2dabcλc + 4
N
δab1N×N , (4.15b)

Tr(λaλb)= 2δab, (4.15c)

where fabc are the SU(N) structure constants, and 1N×N is the N ×N identity matrix.
For a given Fock state we introduce the classical fields representing particle and spin distributions over plane as

ρcl(r)= 〈S|ψ†(r)ψ(r)|S〉, (4.16a)

Ia
cl(r)= 1

2 〈S|ψ†(r)λaψ(r)|S〉. (4.16b)

Instead of dealing separately with ρ(r) and Ia(r), it is more convenient to use a single operator simultaneously
comprising ρ(r) and Ia(r) in one. For this purpose we introduce

Dµν(r)≡ψ†
ν(r)ψµ(r), (4.17)

which is related to particle and isospin operators as

ρ(r)=Tr
[
D(r)

]
, (4.18a)

Ia(r)= 1
2 Tr

[
λaD(r)

]
, (4.18b)

Dµν(r)= 1
N
δµνρ(r)+ (λa)µνIa(r), (4.18c)

where the traces are implied over the isospin indices.
Obviously, identical relations are held for the corresponding classical fields, i.e. introducing

Dcl
µν(r)= 〈S|Dµν(r)|S〉, (4.19)

we have

ρcl(r)=Tr
[
Dcl(r)

]
, (4.20a)

Ia
cl(r)= 1

2 Tr
[
λaDcl(r)

]
, (4.20b)

Dcl
µν(r)= 1

N
δµνρcl(r)+ (λa)µνIa

cl(r). (4.20c)
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Though the physical quantities are Dµν(r), all the very peculiarities of the LLL field theory become manifest only
in terms of core quantities we are now about to introduce. For this purpose we first calculate the Fourier transform

Dµν(k)= 1
2π

∫
Dµν(r)e−ikrdr = 1

2π

∫
ψ†
ν(r)ψµ(r)e−ikrdr. (4.21)

Substituting here (4.1) we find

Dµν(k)= 1
2π

∑
mn

c†
ν(m)cµ(n)

∫
〈0,m|r〉〈r|0,n〉e−ikrdr =

= 1
2π

∑
mn

c†
ν(m)cµ(n)〈0,m|e−ikr |0,n〉 =

= 1
2π

∑
mn

c†
ν(m)cµ(n)〈0,m|e−ik(R+X )|0,n〉 =

= 1
2π

∑
mn

c†
ν(m)cµ(n)〈0,m|e−ikR e−ikX |0,n〉. (4.22)

where the last equality holds since R commutes with X .
Recalling that |0,n〉 = ||0〉〉⊗ |n〉 we find

〈0,m|e−ikR e−ikX |0,n〉 = 〈〈0||e−ikR ||0〉〉〈m|e−ikX |n〉. (4.23)

Expressing R in terms of a-operators and using the Baker-Campbell-Hausdorff formula we find

〈〈0||e−ikR ||0〉〉 = e−
1
4 `

2k2
. (4.24)

Then the Fourier transform (4.22) appears as

Dµν(k)= e−
1
4 `

2k2
D̂µν(k) (4.25)

where
D̂µν(k)≡ 1

2π

∑
mn

〈m|e−ikX |n〉c†
ν(m)cµ(n). (4.26)

Because of the reasonings presented below we name this quantity as a core quantity. Introduce D̂µν(r) as

D̂µν(r)≡ 1
2π

∫
D̂µν(k)e+ikrdk. (4.27)

In order to demonstrate the essence of core fields, it is instructive to derive the relation between Dµν(r) and
D̂µν(r). For this purpose we use (4.25) and write

Dµν(r)= 1
2π

∫
Dµν(k)e+ikrdk =

= 1
2π

∫
e−

1
4 `

2k2
D̂µν(k)e+ikrdk. (4.28)

Expressing D̂µν(k) via D̂µν(r) and substituting into the later we pass to

Dµν(r)= 1
2π

∫
e−

1
4 `

2k2
[

1
2π

∫
D̂µν(r′)e−ikr′dr′

]
e+ikrdk =

= 1
4π2

∫ [∫
e−

1
4 `

2k2
e+ik(r−r′)dk

]
D̂µν(r′)dr′. (4.29)
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Calculating the integral in square braces we obtain

Dµν(r)= 1
π`2

∫
e−`

−2(r−r′)2 D̂µν(r′)dr′. (4.30)

Taking the average of this relation with respect to any Fock state we find

Dcl
µν(r)= 1

π`2

∫
e−`

−2(r−r′)2 D̂cl
µν(r′)dr′. (4.31)

Integrating both sides over r we find ∫
Dcl
µν(r)dr =

∫
D̂cl
µν(r′)dr′, (4.32)

indicating the amount of particles and spins comprised in Dcl
µν(r) coincides with those comprised in D̂cl

µν(r). Therefore
the relation (4.31) means that physical fields are the same core fields but smeared over the area of order of `2 by the
factor of e−`

−2(r−r′)2 as shown in figure 4.2. The corresponding factor in k-space is the one of e−
1
4 `

2k2
in (4.25).

Thus, whatever the Fock state |S〉 is, the quantity 〈S|Dµν(r)|S〉 can never be localized to a point. This is the con-
sequence of the quantum-mechanical fact that electrons in LLL cannot be localized to a point but only to elementary
area of order of `2. In contrast, the core field D̂cl

µν(r) comprises no smearing factors and therefore, can be localized
to a point.1 In this scope, the core quantities introduced via (4.27) describe kind of "cores" located inside physical
electrons which are smeared. In other words, physical objects can be regarded as cores "dressed" in a LLL cloud.

Core Field D̂(r)

Physical Field D(r)

Fig. 4.2: Core fields describe the "cores" located inside the physical fields which are necessarily spatially extended.

As an explicit example of this statement we take N = 2 and consider the Fock state (4.4)

|S〉 =
∞∏

n=0
c†
↑(2n)c†

↓(2n+1)|∅〉. (4.33)

In order to obtain the average Dcl
µν(r)= 〈S|Dµν(r)|S〉 we first calculate

〈S|c†
µ(m)cν(n)|S〉 =


1 f or µ= ν=↑, m = n = 0,2,4, . . .

1 f or µ= ν=↓, m = n = 1,3,5, . . .

0 otherwise.

(4.34)

1 If more precisely, the system under consideration is the field theoretical model at finite densities what means that the ground state of the
system differs from the vacuum state of the theory. In this light, the expectation value of D̂µν(r) is decoupled into the ground state and the
excitation parts. Localizable is the excitation part of 〈S|D̂µν(r)|S〉, while the excitation part of 〈S|Dµν(r)|S〉 is necessarily smeared.
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From (4.26) we have

D̂cl
µν(k)= 〈S|D̂µν(k)|S〉 = 1

2π

∑
mn

〈m|e−ikX |n〉〈S|c†
ν(m)cµ(n)|S〉. (4.35)

Using (4.34) and (3.17) we find the only non-vanishing components are

D̂cl↑↑(k)= 1
2π

∑
even

〈n|e−ikX |n〉 = 1
2π

e−
1
4 `

2k2 ∞∑
n=0

L2n( 1
2`

2k2), (4.36a)

D̂cl↓↓(k)= 1
2π

∑
odd

〈n|e−ikX |n〉 = 1
2π

e−
1
4 `

2k2 ∞∑
n=0

L2n+1( 1
2`

2k2). (4.36b)

In chapter 3 we have derived
∞∑

n=0
Ln( 1

2`
2k2)= 2π`−2δ(k). (4.37)

Besides, (5.11.2.1) of Prudnikov vol. 2. yields

∞∑
n=0

(−1)nLn( 1
2`

2k2)= 1
2 e

1
4 `

2k2
. (4.38)

Using these in (4.36) we find

D̂cl↑↑(k)= 1
2`2 δ(k)+ 1

8π
⇒ D̂cl↑↑(r)= 1

4π`2 + 1
4
δ(r), (4.39a)

D̂cl↓↓(k)= 1
2`2 δ(k)− 1

8π
⇒ D̂cl↓↓(r)= 1

4π`2 − 1
4
δ(r), (4.39b)

and further

ρ̂cl(r)= ρL, (4.40a)

Îx
cl(r)= Î y

cl(r)= 0, (4.40b)

Îz
cl(r)= 1

4δ(r), (4.40c)

where ρL = (2π`2)−1 was introduced in (2.25). We see that the spin z-component is localized to a point.
Constructing the corresponding physical quantities by use of (4.30) we find

ρcl(r)= ρL, (4.41a)

Ix
cl(r)= I y

cl(r)= 0, (4.41b)

Iz
cl(r)= 1

4ρL e−`
−2r2

, (4.41c)

where the spin z-component is exponentially smeared over the area of order of `2.
Finally, we point out one remarkable property of core fields. Average values of spin fields are usually subject to

some normalization conditions, e.g. S2 = 1 in non-linear sigma models. Here, once the isospin fields are concerned, it
is natural to expect similar normalization properties. However, the physical isospin fields set by (4.41) would hardly
exhibit any such property due to the exponential factor. Core fields (4.40) contain δ(r)-type factors which do not lead
to any reasonable outcome when squared up. In contrast, if we employ the non-commutative multiplication, we find
the sought for relation (here we use the result of problem (3.a))

Îa
cl? Îa

cl = 1
16

δ(r)?δ(r)= 1
16π2`4 , (4.42)
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signifying that the normalization conditions are obeyed by core fields, and these are the non-commutative normal-
ization conditions. In the subsequent chapters we present this and related issues in details.

Problems

(4.a) Calculate 〈∅|ψµ1 (r1)ψµ2 (r2)ψµ3 (r3)|S〉 for the Fock state |S〉 = c†
ν1 (n1)c†

ν2 (n2)c†
ν3 (n3)|∅〉 and express in the

form of Slater determinant.

(4.b) Calculate 〈〈0||e−ikR ||0〉〉.
(4.c) Verify (4.34).



Chapter 5

NON-COMMUTATIVE KINEMATICS

5.1 Algebra W∞(N)

In previous chapter we introduced the core operator

D̂µν(k)≡ 1
2π

∑
mn

〈n|e−ikX |m〉c†
ν(n)cµ(m). (5.1)

Here we build the algebra satisfied by these quantities. We start by calculating the commutation relations for the
combination of c-operators involved in (5.1). These are

Dµν(m,n)≡ c†
ν(n)cµ(m). (5.2)

Trivial calculations by use of anticommutation relations (4.2) yield[
Dµν(m,n),Dστ(s, t)

]= δµτδmtDσν(s,n)−δσνδsnDµτ(m, t). (5.3)

Using this together with (3.8) we find

4π2[
D̂µν(k), D̂στ(k′)

]= δµτ∑
ns
〈n|e−ikX e−ik′X |s〉Dσν(s,n)−δσν

∑
mt

〈t|e−ik′X e−ikX |m〉Dµτ(m, t). (5.4)

Using here
e−ikX e−ik′X = e+(i/2)`2k∧k′

e−i(k+k′)X (5.5)

we find
2π

[
D̂µν(k), D̂στ(k′)

]= δµτ e+(i/2)`2k∧k′
D̂σν(k+k′)−δσν e−(i/2)`2k∧k′

D̂µτ(k+k′). (5.6)

Rewritten in terms of ρ̂(k) and Îa(k) this appears as

2π
[
ρ̂(k), ρ̂(k′)

]= 2iρ̂(k+k′)sin( 1
2`

2k∧k′), (5.7a)

2π
[
Îa(k), ρ̂(k′)

]= 2i Îa(k+k′)sin( 1
2`

2k∧k′), (5.7b)

2π
[
Îa(k), Îb(k′)

]= i fabc Îc(k+k′)cos( 1
2`

2k∧k′)+

+ idabc Îc(k+k′)sin( 1
2`

2k∧k′)+

+ iN−1δab ρ̂(k+k′)sin( 1
2`

2k∧k′). (5.7c)

The algebra (5.7) is referred to as W∞(N) since it is the SU(N) extension of W∞ which is given by (5.7a). Impor-
tant physical consequence of W∞(N) consists in the fact that particle and spin densities are intrinsically entangled.
Such an entanglement disappears in commutative limit (`→ 0) and the algebra W∞(N) becomes reduced back to
the ordinary SU(N). Charge-spin entanglement is pure non-commutative effect endowing charged excitations with
nontrivial topology.

Taking k′ = 0 in (5.7a) and (5.7b) we find[
ρ̂(k), ρ̂(0)

]= [
Îa(k), ρ̂(0)

]= 0, (5.8)
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i.e. ρ̂(0) is the Casimir operator of W∞(N). Further, (5.1) give

ρ̂(0)=∑
µ

D̂µµ(0)= 1
2π

∑
µ

∑
mn

〈n|m〉c†
µ(n)cµ(m)= 1

2π

∑
µm

c†
µ(m)cµ(m), (5.9)

where from we read the physical meaning of 2πρ̂(0): it counts the total number of particles in a Fock state.
General elements of W∞(N) are linear combinations of D̂µν(k)

W =
∫

wµν(k)D̂µν(k)dk, (5.10)

where wµν(k) are complex-valued functions satisfying

[wµν(k)]∗ = wνµ(−k), (5.11)

as required for W to be hermitian.
The element (5.10) can be written in a different form. Using (5.1) we express it as

W =∑
µν

ξµν(m,n)c†
ν(n)cµ(m), (5.12)

where
ξµν(m,n)≡ 1

2π

∫
wµν(k)〈n|e−ikX |m〉dk, (5.13)

with
[ξµν(m,n)]∗ = ξνµ(n,m). (5.14)

5.2 Non-Commutative Constraints

We comment on how the non-commutativity presented in the microscopic theory generates the constraints on clas-
sical objects. We first define the class of Fock states we work with, and then derive the non-commutative relations
satisfied by the expectation values of core fields.

We consider the class of Fock states which can be written as

|S〉 = eiW |S0〉, (5.15)

where W is an arbitrary element of the algebra W∞(N), and |S0〉 is a pure state, i.e. of the form

|S0〉 =
{∏
µm

[
c†
µ(m)

]νµ(m)
}
|∅〉. (5.16)

Each νµ(m) may take the values either 0 or 1 specifying whether the isospin state µ at Landau site m is empty or
occupied, respectively.

The amount of electrons at Landau site m is given by

ν(m)=
N∑
µ=1

νµ(m) (5.17)

and may take values from 0 up to N. The quantity referred to as filling factor is defined by

ν= lim
M→∞

1
M

M−1∑
m=0

ν(m) (5.18)

and measures how many electrons are accommodated per site in average (common symbol for the filling factor is the
Greek "nu". Here we use "upgreek" LATEX font ν for it in order to avoid confusion with the isospin index ν).

Though the class of states determined by (5.15) and (5.16) does not embrace the whole Fock space it is general
enough and embraces all physically relevant (ground and excited) states at integer fillings (ν= integer).

We now trace out the relations satisfied by classical fields Dcl
µν(r) = 〈S|Dµν(r)|S〉 where |S〉 is of the form (4.15).

These relations will appear as generalization of the non-commutative normalization (3.42) obtained for the particular
Fock state (4.33).
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For this purpose we need to calculate the quantity

Dcl
µν(m,n)= 〈S|Dµν(m,n)|S〉 = 〈S|c†

ν(n)cµ(m)|S〉. (5.19)

Assume the system comprises finite number of Landau sites n = 0,1, . . . , NL −1 implying the limit NL →∞ in final
expressions. It is important that the algebra W∞(N) set by (5.3) is not violated in such a finite system. For the sake
of convenience we combine the isospin and site indices into a multi-index M ≡ (µ,m), which runs over the values
M = 1,2, . . . , NNL. In terms of these multi-indices, the algebra W∞(N) turns into the algebra U(NNL), and the
transformation rules for fermion operators are

e−iW cI e+iW =∑
I ′

(U)I I ′ cI ′ , (5.20a)

e−iW c†
I e+iW =∑

I ′
c†

I ′ (U
†)I ′ I , (5.20b)

where U is (NNL)× (NNL) unitary matrix

UU† =U†U = I(NNL)×(NNL). (5.21)

Writing expectation value (5.19) in terms of multi-indices we proceed as follows

Dcl
IJ = 〈S|c†

J cI |S〉 =

= 〈S0|e−iW c†
J cI e+iW |S0〉 =

= 〈S0|e−iW c†
J e+iW e−iW cI e+iW |S0〉 =

=∑
I ′

∑
J′

(U†)J′J (U)I I ′〈S0|c†
J′ c

†
I ′ |S0〉. (5.22)

In terms of multi-indices the state |S0〉 appears as

|S0〉 =
NNL∏
K=1

[c†
K ]νK |∅〉, (5.23)

where from we trivially obtain
〈S0|c†

J c†
I |S0〉 =νIδIJ , (5.24)

with δMN ≡ δµνδmn.
Substituting this into (5.22) we come to

Dcl
IJ =∑

K
νK (U)IK (U†)K J . (5.25)

Using this together with the unitarity of U we pass further to

∑
S

Dcl
ISDcl

SJ =∑
S

[∑
K
νK (U)IK (U†)KS

][∑
K ′

νK ′ (U)SK ′ (U†)K ′J

]
=

=
[∑

K
νK (U)IK

][∑
K ′

νK ′ (U†)K ′J

]∑
S

(U†)KS(U)SK ′︸ ︷︷ ︸
δKK ′

=

=∑
K
ν2

K (U)IK (U†)K J . (5.26)

Provided νK is either 0 or 1, we have ν2
K =νK and come to∑

S
Dcl

ISDcl
SK =∑

K
νK (U)IK (U†)K J . (5.27)
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Comparing the right hand side to (5.25) we eventually come to∑
S

Dcl
ISDcl

SK = Dcl
IJ . (5.28)

Decoupling site and spin indices and taking then NL →∞ we rewrite (5.29) as

N∑
σ=1

∞∑
s=0

Dcl
µσ(m, s)Dcl

σν(s,n)= Dcl
µν(m,n). (5.29)

In terms of D̂cl
µν(k) this takes the form

`2
∫

e+i(`2/2)k∧k′
D̂cl
µσ(k−k′)D̂cl

σν(k′)dk′ = D̂cl
µν(k), (5.30)

where from we can pass to D̂cl
µν(r) and obtain

N∑
σ=1

D̂cl
µσ(r)? D̂cl

σν(r)= 1
2π`2 D̂cl

µν(r). (5.31)

This is the manifestation of non-commutativity at the level of field theory.
As we see, the non-commutativity encoded in (2.11b) becomes perceptible in terms of core fields D̂cl

µν(r), but not
in terms of Dcl

µν(r). Relation (5.31) indicates that core fields play crucial role in studying the quantum Hall systems.
It is reasonable to rewrite (5.31) in terms of ρ̂cl(r) and Îcl

a (r) which are related to D̂cl
µν(r) as

D̂cl
µν(r)= 1

N
δµν ρ̂

cl(r)+ (λa)µν Îcl
a (r). (5.32)

Substituting this into (5.31) and using the properties of Gell-Mann matrices we obtain

Îcl
a ? Îcl

a = 1
4π`2 ρ̂

cl − 1
2N

ρ̂cl? ρ̂cl, (5.33a)

(
i fabc +dabc

)
Îcl

b ? Îcl
c = 1

2π`2 Îcl
a − 1

N
ρ̂cl? Îcl

a − 1
N

Îcl
a ? ρ̂

cl. (5.33b)

In order to point out the essence of these relations we first study the homogeneous configuration. So far we have
not concerned the dynamical aspects. We shall comment on this issue only in the subsequent lectures. Here we only
state that homogeneous configurations arise as ground states of dynamical models.

In the ground state the filling of a separate site ν(m) takes one and the same integer value for all m. This value is
the value of the filling factor given by (5.18), i.e. we have ν(m)=ν where ν is an integer with 0ÉνÉ N. Consequently,
we have

ρ̂cl(r)= ν

2π`2 . (5.34a)

For the spin field we employ the similar normalization and write

Îcl
a (r)= Ia

2π`2 . (5.34b)

Remind now that for homogeneous configurations the NC product coincides with the regular (commutative) one.
Therefore, substituting (5.34) into (5.33) we come to

IaIa = ν(N −ν)
2N

, (5.35a)

dabc Ib Ic = N −2ν
N

Ia, (5.35b)

where ν is an integer with 0ÉνÉ N.
Relations (5.35) define the so-called Grassmannian manifold GN,ν. In this connection, we regard the relations

(5.33) as a definition of the non-commutative Grassmannian manifold.
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5.3 Commutative Grassmannian Fields

Non-commutative relations (5.31) and (5.33) can be resolved in terms of non-commutative Grassmannian fields.
Though (5.33) look more physical, the form (5.31) is more compact and convenient to work with.

Before resolving this relation in terms of non-commutative Grassmannian fields, it would be instructive first to
get acquainted with commutative Grassmannian fields.

Introduce the N-component column

f (r)=


f1(r)

...

fN (r)

 , (5.36)

where fσ(r) are complex-valued functions subject to the normalization

f †(r) f (r)=
N∑
σ=1

f ∗σ (r) fσ(r)= 1. (5.37)

Then the quantities

Dµν(r)≡ 1
2π`2 fµ(r) f ∗ν (r) (5.38)

satisfy the relations

Dµσ(r)Dσν(r)= 1
2π`2 Dµν(r), (5.39)

which are the commutative counterparts of (5.31).
Calculating the particle and spin densities we find

%(r)=Tr
[
D(r)

]= ρL, (5.40a)

Ia(r)= 1
2 Tr

[
λaD(r)

]= 1
2ρL f †(r)λa f (r), (5.40b)

i.e. these describe isospin field configurations with homogeneous particle density ρL.
Among the variety of f (r) there are ones which differ from each other by an overall phase factor. These copies

lead to identical Dµσ(r), and we identify them as describing one and the same physical configuration. Factorizing
the space of f (r) with this equivalence we obtain what is referred to as the complex projective space with its ele-
ments being the complex projective fields, or the CPN−1 fields, in short. The N-component complex-valued column
comprises 2N real parameters, one of which is fixed by normalization (5.37), and another one is fixed after removing
the overall phase. Therefore, the CPN−1 field comprises 2(N −1) real parameters.

The CPN−1 field represents the particular case of Grasmmannian field GN,ν where ν= 1. For defining GN,ν let
us introduce ν amount of columns

f 1 =


f 1
1

f 1
2
...

f 1
N

 , f 2 =


f 2
1

f 2
2
...

f 2
N

 , · · · f ν =


f ν1
f ν2
...

f νN

 , (5.41)

subject to

[ f r(r)]† f s(r)=
N∑
σ=1

[ f r
σ(r)]∗ f s

σ(r)= δrs. (5.42)

Then the quantity

Dµν(r)≡ 1
2π`2

ν∑
s=1

f s
µ(r)[ f s

ν (r)]∗ (5.43)

satisfies the same equation (5.39). The corresponding particle and spin densities are

%(r)=Tr
[
D(r)

]= ρLν, (5.44a)

Ia(r)= 1
2 Tr

[
λaD(r)

]= 1
2ρL

ν∑
s=1

[ f s(r)]†λa f s(r), (5.44b)

where the particle number density is ν-times more compared to (5.40a).
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Like in the case of (5.38), the quantity set by (5.43) is invariant under the transformation

f r
µ (r)→U rs f s

µ(r) U†U = Iν×ν. (5.45)

The space of
{
f 1, f 2, . . . , f ν

}
factorised with respect to this equivalence is the Grassmannian manifold GN,ν. Number

of real free parameters comprised in ν amount of N-component complex-valued columns is 2Nν. Normalizations
(5.42) fix ν real parameters for r = s, and ν2 −ν real ones for r 6= s, i.e. ν2 real parameters in total. Removing the
freedom associated with U-transformation (5.45) we fix more ν2 real parameters. Hence the Grassmannian field
GN,ν comprises 2ν(N −ν) real degrees of freedom.

5.4 Non-Commutative Grassmannian Fields

We now turn to NC Grassmannian fields. Analogously to the commutative case here we have GN,1 = CPN−1. There-
fore we do not spread on considering NC CPN−1 separately but comment right on NC GN,ν.

Again, we introduce

f 1 =


f 1
1

f 1
2
...

f 1
N

 , f 2 =


f 2
1

f 2
2
...

f 2
N

 , · · · f ν =


f ν1
f ν2
...

f νN

 , (5.46)

which in contrast to (5.42) are subject to

[ f r(r)]†? f s(r)=
N∑
σ=1

[ f r
σ(r)]∗? f s

σ(r)= δrs. (5.47)

Then the quantities D̂cl
µν(r) satisfying the non-commutative relation (5.31) can be written as

D̂cl
µν(r)= 1

2π`2

ν∑
s=1

f s
µ(r)? [ f s

ν (r)]∗. (5.48)

Remind that f1? f2 6= f2? f1, in general, so the order of multiplicatives is a sensitive case in (5.47) and (5.48). Particle
and spin densities appear as

ρ̂cl(r)=Tr
[
D̂cl(r)

]= ρL

ν∑
s=1

f s
µ(r)? [ f s

µ(r)]∗, (5.49a)

Îa
cl(r)= 1

2 Tr
[
λaD̂cl(r)

]= ρL

ν∑
s=1

( 1
2λa)νµ f s

µ(r)? [ f s
ν (r)]∗. (5.49b)

In contrast to commutative case we cannot interchange the places of f s
µ(r) and [ f s

µ(r)]∗ in (5.49a)

f s
µ(r)? [ f s

µ(r)]∗ 6= [ f s
µ(r)]∗? f s

µ(r), (5.50)

and therefore the particle density is not homogeneous any more, but is spatially modulated.
Like in commutative case, here we also have various sets

{
f 1, f 2, . . . , f ν

}
producing identical particle and spin

densities. Indeed, let U(r) be a ν×ν non-commutative unitary matrix

U(r)?U†(r)= Iν×ν ⇒ Uus(r)? [Uvs(r)]∗ = δuv,

U(r)†?U(r)= Iν×ν ⇒ [Uur(r)]∗?Uus(r)= δrs,
(5.51)

and consider the transformation

f s
σ(r) → f u

σ (r)?Uus(r), (5.52a)

[ f s
σ(r)]∗ → [Uus(r)]∗? [ f u

σ (r)]∗. (5.52b)
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Remark that these two relations follow one from another by use of the property ( f ?h)∗ = h∗? f ∗. Using (5.51) we
find that (5.52) maintains the normalization (5.46) while (5.48) is invariant. Factorizing thew space of

{
f 1, f 2, . . . , f ν

}
with respect to this equivalence we obtain the space of non-commutative Grassmannian fields.

It is instructive to bring the example of the simplest (ν= 1) case of (5.51). This is the non-commutative exponent

eiξ(r) ≡ 1+ i
1!
ξ+ i2

2!
ξ?ξ+ i3

3!
ξ?ξ?ξ+·· · (5.53)

which obviously satisfies eiξ(r)? e−iξ(r) = 1.

Problems

(5.a) Show that hermiticity of W set by (5.10) requires (5.11).

(5.b) Employing the anticommutation relation derive (5.20) for NNL = 2.

(5.c) Derive (5.29) → (5.30) → (5.31).

(5.d) Use the properties (4.15) of "Gell-Mann" matrices and obtain (5.33) from (5.31).

(5.e) Show that (5.47) and (5.48) are invariant against the non-commutative transformations (5.51).
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TOPOLOGICAL CHARGE OF NON-COMMUTATIVE GRASSMANNIAN FIELDS

We comment on topological characteristics of non-commutative Grassmannian fields. For this purpose we first briefly
present the basics of homotopy and topology.

6.1 Basic Aspects of Homotopy Theory

Consider a plane with a hole as shown in figure 6.1, and the closed curves in it starting and ending at point x0. The
curves shown in left panel can be continuously deformed one into another, while the ones in middle panel cannot be
deformed continuously one into another due to the hole. In this light we introduce the notion of equivalence: if any
two curves can be continuously deformed one into another, we say they are homotopically equivalent, hence belong
to one and the same homotopy class, otherwise to different classes. For example, the curves A and B belong to the
same class, while C is from another class. Homotopy classes can be labelled by an integer number counting the times
curves encircle the hole, e.g. the curve C encircles the hole once, the curve D in the right panel encircles it twice; A
and B do not encircle at all, and so on.

A B

x0

C B

x0 D x0

Fig. 6.1:

Each curve can be endowed with direction it encircles the hole, For example, the curve C can be redrawn in two
different ways as shown in figure 6.2. Hence the left curve is assigned the integer "+1" (anticlockwise is positive
direction) while the one on the right the integer "−1" (clockwise is negative direction). The curves like D encircling
the hole twice may carry the number either "+2" or "−2", and so on.

The essence of direction is absent for the curves like A and B: even if we endow them by any direction, we can
shrink them to a point and then restore back with opposite direction. Such a trick cannot be done for the two curves
shown in figure 6.2 because they cannot be shrunk to a point x0. In this scope the curves labelled by opposite numbers
are attributed to different homotopy classes.

We have thus broken apart the set of curves into homotopy classes labelled by integer numbers. Remind in this
connection that integers form the group denoted by Z with respect to addition. Correspondingly, the set of homotopy
classes can be endowed by the analogous group structure. Let C̄+1 and C̃+1 be two loops starting and ending at the
same point x0 and both encircling the hole once in positive direction as shown in figure 6.3. Continuously detaching
the start point of C̄+1 together with the end point of C̃+1 away from x0 we pass to what is shown in middle panel and
further to C+2 shown in right panel. We express this fact as C̄+1 + C̃+1 = C+2. Thus, composition of a curve labeled
by m with another one labeled by n produces the curve with m+n. In this view the homotopy classes form the group
which is denoted as π1(M) and is referred to as the fundamental group. The subscript "1" indicates the involved
objects (loops) over the space M are one-dimensional. In the given case this is an Abelian group isomorphic to the
one of integers and we express this fact as π1(P)=Z.
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x0 x0

Fig. 6.2:

Ü

x0

Ü

x0 x0

Fig. 6.3:

The same homotopy group arises when considering the mapping from S1 to another S1. Such structures arise in
certain physical theories where the phase fields are defined over the xy-plane. Parameterizing the points of a plane
as reiφ, the phase field can be written as A(r,φ) = ei f (r,φ) and must be single-valued, i.e. performing one turn in the
plane around the origin (φ varies from some value φ0 to φ0+2π) the phase field must take the same value. Therefore
we must have f (r,φ+2π)= f (r,φ)+2πZ. As an explicit realizations we can bring fn(r,φ)= nφ with n being an integer
counting the times one S1 winds around the other. Analytically this number can be expressed as

n = 1
2πi

∮
A∗∂φ Adφ. (6.1)

Multiplication of two such functions is given by Am An = Am+n and gives rise to the group structure which is ex-
pressed as π1(S1)=Z.

Considering loops on S2 we come to trivial homotopy group: any closed loop on a sphere is contractible to a point
hence we have π1(S2)= 0.

We bring yet another example: loops on a torus T2. In that case a loop may encircle the major circle as well as
the minor one, as shown in figure 6.4. Obviously, a loop may simultaneously encircle m times one of these circles,
and n times the other. Therefore, every loop on T2 is characterized by two integers, hence the homotopy group is the
direct product of two Z groups: π2(T2)=Z⊗Z.

Fundamental group reflects the properties of loops under continuous deformations hence characterizes topological
properties of the space the loops are considered in: loops on a plane feel the presence of a hole because the ones with
distinct winding numbers cannot be continuously deformed one into another. In contrast, loops in three-dimensional
space are all continuously contractible to a point even if any points of a space are removed; in other words there is no
sense of encircling a point by a loop in three dimensions. Therefore, the fundamental group is trivial hence incapable
of detecting such defects in three dimensions. However, such detection is possible if we employ 2-spheres instead of
loops what gives rise to the homotopy group π2(M). Higher homotopy groups πn(M) can be introduced by considering
n-spheres embedded in M.

Below we comment on π2(S2) which is directly related to skyrmions and Grassmannian fields arising in the
context of the field theory in the lowest Landau level.
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Fig. 6.4: Mapping from a sphere S1 to torus T2: left panel shows (m,n)= (1,0) and (m,n)= (0,1); right panels shows (m,n)= (1,1).

6.2 Non-Linear Sigma Model and Commutative Winding Number

Consider the field J= (Jx,Jy,Jz) defined on a plane and subject to the constraint

J2 =∑
a
J2

a = 1. (6.2)

Non-linear sigma model is defined by the following energy functional

E = 1
2

∫
(∂kJa)2dr. (6.3)

In order the energy to be finite the derivatives ∂kJa must vanish at spatial infinity with sufficient velocity. This
implies the field J must approach a constant value as r →∞. Without loss of generality we may assume this constant
value is the "north pole" J= (0,0,1). This is shown in figure 6.5.

N

S

Fig. 6.5: Mapping R2 → S2.

All points of an infinite circle (r =∞) are mapped into a single point J= (0,0,1). In such a cases we say that the
original R2 is compactified into S2. Hence instead of mapping R2 → S2 we have the one S2 → S2. Such mappings
are classified in accord with the homotopy group π2(S2) = Z, where the integer counts the times the field space S2

is wrapped when the coordinate r spans the entire plane. Such configurations are called O(3) skyrmions and the
corresponding winding number (topological charge, Pontryagin number) is given by

Q = 1
8π

∫
εabcεi jJa(∂iJb)(∂ jJc)dr. (6.4)
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We proceed to explicitly construct skyrmion configurations by minimizing the energy functional (6.3). For this
purpose we consider the obvious inequality∫

(∂iJa ±εi jεabcJb∂ jJc)2dr Ê 0. (6.5)

Due to JaJa = 1 we have Ja∂ jJa = 0 hence the inequality can be rewritten as∫
(∂iJa)2dr Ê±

∫
εi jεabcJa(∂iJb)(∂ jJc)dr. (6.6)

This is equivalent to
E Ê 4πQ, (6.7)

where E is the energy of a configuration, and Q is its winding number.
Energy becomes minimal when the equality is held in (6.7) and correspondingly in (6.5). This leads to

∂iJa ±εi jεabcJb∂ jJc = 0, (6.8)

and such configurations are referred to as the Bogomol’nyi-Prasad-Sommerfeld (BPS) solitons.
Details on solving this equation can be found e.g. in section 7.7 of Ezawa, while here we directly bring the typical

skyrmion solutions. These are given by

Jx = 2κnrn

r2n +κ2n cos(nφ), Jy = −2κnrn

r2n +κ2n sin(nφ), Jz = r2n −κ2n

r2n +κ2n , (6.9)

where κ is a positive constant specifying the scale of a skyrmion, and q is positive integer. Calculating the winding
number (6.4) we find Q = n.

Another solution named as antiskyrmion is given by

Jx = 2κnrn

r2n +κ2n cos(nφ), Jy = 2κnrn

r2n +κ2n sin(nφ), Jz = r2n −κ2n

r2n +κ2n , (6.10)

and carries the winding number Q =−n.
In section 5.3 we introduced the commutative CPN−1 field by (5.37) and the corresponding isospin field by (5.40b).

For N = 2 those constructions give the sigma-field (Jx,Jy,Jz) we have just considered here. We now proceed to express
the winding number (6.4) of a sigma-field in terms of the underlying CP1 field f (r). For this purpose we omit the
dimensional factor of ρL and write (5.40b) as

Ja(r)= 1
2 f †(r)σa f (r), (6.11)

where σa are the Pauli matrices. Substituting this into (6.4) we find

Q = 1
2πi

εkl

N∑
µ=1

∫
(∂k f̄µ)(∂l fµ)dr (6.12)

where N = 2.
Compared to (6.4), this expression is more convenient because it provides with the straightforward way for gen-

eralizing the winding number expression first to CPN−1 fields, then to Grassmannian fields GN,ν, and finally to their
non-commutative versions. In particular, the winding number of a CPN−1 field is given by the same expression (6.12)
where f (r) is the N-component column.

As introduced in section 5.3 the Grassmannian field GN,ν is formed by f 1(r), f 2(r), . . . , f ν(r), each representing
an N-component column and satisfying (5.42). In that case the expression (6.12) is generalized to

Q = 1
2πi

εkl

N∑
µ=1

ν∑
s=1

∫
(∂k f̄ s

µ)(∂l f s
µ)dr, (6.13)

which allows the further straightforward generalization to non-commutative Grassmannian fields.
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6.3 Non-Commutative Winding Number

The prior requirement while generalizing the winding number to non-commutative case is that in the commutative
limit it must be reduced back to (6.13). Remind, now that the expansion (3.2) for the NC product can be expressed as

f1? f2 = f1 f2 − i
2θεn j(∂n f1)(∂ j f2)+O(θ2). (6.14)

Then, introducing the so-called Moyal bracket as[
f1, f2

]
? = f1? f2 − f2? f1 (6.15)

we can write [
f̄ s
µ(r), f s

µ(r)
]
? =−iθεi j(∂i f̄ s

µ)(∂ j f s
µ)+O(θ2). (6.16)

This expression suggests the natural NC generalization of (6.13)

Q = 1
2πθ

N∑
µ=1

ν∑
s=1

∫ [
f̄ s
µ(r), f s

µ(r)
]
?dr. (6.17)

Topological charge can be expressed in a variety of ways and they are all equivalent. The corresponding topolog-
ical charge densities are distinct and carry no physical meaning, in general. Nevertheless the one corresponding to
(6.17) is preferred since it is related to electron density excitation. Indeed, the topological charge density for (6.17)
looks as

Q(r)= 1
2πθ

N∑
µ=1

ν∑
s=1

[
f̄ s
µ(r), f s

µ(r)
]
? =

= 1
2πθ

N∑
µ=1

ν∑
s=1

f̄ s
µ(r)? f s

µ(r)− 1
2πθ

N∑
µ=1

ν∑
s=1

f s
µ(r)? f̄ s

µ(r). (6.18)

Taking into account (5.47) and (5.49a) we rewrite this as

Q(r)=−[
ρ̂cl(r)−νρL

]
. (6.19)

Later on we demonstrate that the quantity νρL represents the ground state value of the particle density. Conse-
quently, the combination ρ̂cl(r)−νρL describes the excitation part of the charge density and we have

Q =−∆Ncl
e (6.20)

where ∆Ncl
e is the number of extra particles brought by excitations. Remark, that the states defined by (5.15) and

(5.16) comprise definite amount of particles. Once the ground and excited states both fall in this category, the quantity
∆Ncl

e is always integer, so the topological charge is also integer.
Summarizing, non-commutative soliton necessarily carries the proper electric charge proportional to its topologi-

cal charge. This is the peculiarity of non-commutative theories which has no analogue in commutative constructions.

Problems

(6.a) Calculate the topological charge for skyrmions (6.9) and antiskyrmions (6.10).

(6.b) Derive (6.12) from (6.4).
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ELECTRON-ELECTRON INTERACTIONS

We apply the second quantization formalism for describing four-fermion interactions in the lowest Landau level. We
start from deriving the direct and exchange interaction energies. The later is shown to comprise the non-commutative
CP-models as its low-energy constituent.

We show that in the ground state the isospin averages are spontaneously aligned along an arbitrarily chosen
direction. This takes place due to the four-fermion exchange interaction even in the absence of the Zeeman term. For
that reason the system is called the quantum Hall ferromagnet.

We then study excitations over the ground state. For the sake of simplicity we consider the case of N = 2 (µ=↑,↓)
where the filling ν= 1 is the only nontrivial one.

7.1 Four-Fermion Interaction

As we have already pointed out, the kinetic Hamiltonian is quenched in the lowest Landau level, hence the dynamics
is governed solely by the electron-electron (four-fermion) interactions. The later is described by the second quantized
Hamiltonian

He = 1
2

∫ [
ρ(r1)−ρe

]
V (r1 − r2)

[
ρ(r2)−ρe

]
dr1dr2, (7.1)

where ρ(r) is the particle density operator, and eρe is the density of constrained charges providing electric neutrality
of the system in the ground state.

One-particle potential V (r) is of Coulomb type (∼ r−1) in real systems, but here we consider the general case with
the only assumption that V (r) is repulsive.

In what follows we calculate the average value E ≡ 〈S|He|S〉 and express it in terms of core fields ρ̂cl ≡ 〈S|ρ̂|S〉
and Îa

cl ≡ 〈S|Îa|S〉. Here |S〉 is the Fock state set by (5.15) and (5.16) which (as previously mentioned) embraces all
physically relevant configurations as ground state and various excited states. Sandwiching (7.1) we find

〈S|He|S〉 = 1
2

∫
V (r1 − r2)〈S|ρ(r1)ρ(r2)|S〉dr1dr2−

− 1
2ρe

∫
V (r1 − r2)〈S|ρ(r2)|S〉dr1dr2−

− 1
2ρe

∫
V (r1 − r2)〈S|ρ(r1)|S〉dr1dr2+

+ 1
2ρ

2
e

∫
V (r1 − r2)〈S|S〉dr1dr2. (7.2)

In the last term of this expression we employ the normalization 〈S|S〉 = 1. The two middle ones are calculable as∫
V (r1 − r2)〈S|ρ(r2)|S〉dr1dr2 =

∫
V (r1 − r2)ρcl(r2)dr1dr2. (7.3)

We now pass to calculating the first term of (7.2). For this purpose we first express it in terms of creation and
annihilation operators. Using expansion (3.1) in ρ =ψ†ψ we find

ρ(r)= ∑
mn

〈0,m|r〉〈r|0,n〉c†
µ(m)cµ(n). (7.4)
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Substituting this into the first term of (7.2) takes the form

1
2

∫
V (r1 − r2)〈S|ρ(r1)ρ(r2)|S〉dr1dr2 =

∑
Vmnst〈S|c†

µ(m)cµ(n)c†
ν(s)cν(t)|S〉, (7.5)

where we have introduce the notation

Vmni j ≡ 1
2

∫
V (r1 − r2)〈0,m|r1〉〈r1|0,n〉〈0, s|r2〉〈r2|0, t〉dr1dr2. (7.6)

Using the Fourier transform

V (r1 − r2)= 1
2π

∫
V (k)e+ik(r1−r2)dk, (7.7)

we bring this to

Vmnst = 1
4π

∫
e−

1
2 `

2k2
V (k)〈m|e+ikX |n〉〈s|e−ikX |t〉dk. (7.8)

Later we will employ the properties of Vmnst which trivially follow from (7.8). These are∑
n

Vmnnt = 1
4π

δmt

∫
e−

1
2 `

2k2
V (k)dk (7.9)

and Vmnst =Vstmn.

7.2 Calculating Four-Point Averages

We present the details of calculating the four-point average values 〈S|c†
µ(m)cν(n)c†

σ(s)cτ(t)|S〉. Using the anticom-
mutation relations (4.2) we write

〈S|c†
µ(m)cν(n)c†

σ(s)cτ(t)|S〉 = 〈S|c†
µ(m)

[
δσνδsn − c†

σ(s)cν(n)
]
cτ(t)|S〉 =

= δσνδsn〈S|c†
µ(m)cτ(t)|S〉−〈S|c†

µ(m)c†
σ(s)cν(n)cτ(t)|S〉, (7.10)

where the two-point average 〈c†
µ(m)cτ(t)〉 is expressible in terms of D̂cl

τµ(k), while for calculating the four-point av-
erage we proceed as follows. Combine the spin and site indices into multi-index M ≡ (µ,m) (for details see the text
after (5.19) and up to (5.21) included) and write the four-point average as

〈S|c†
M c†

S c†
N c†

T |S〉 = 〈S0|
[
e−iW c†

M e+iW][
e−iW c†

S e+iW][
e−iW c†

N e+iW][
e−iW c†

T e+iW]|S0〉 =

= (U†)†
M′M(U†)†

S′S(U)†
NN ′ (U)†

TT ′〈S0|c†
M′ c

†
S′ c

†
N ′ c

†
T ′ |S0〉. (7.11)

Provided |S0〉 is pure state, the four-point average in the right hand side is easily calculable and appears as

〈S0|c†
M′ c

†
S′ c

†
N ′ c

†
T ′ |S0〉 =ν†

N ′ν
†
T ′ (δ

†
M′T ′δ

†
S′N ′ −δ†

M′N ′δ
†
S′T ′ ), (7.12)

and we rewrite (7.10) as

〈S|c†
M c†

S c†
N c†

T |S〉 =
[
ν†

M′ (U)†
TM′ (U†)†

M′M

][
ν†

S′ (U)†
NS′ (U†)†

S′S

]
−

−
[
ν†

M′ (U)†
NM′ (U†)†

M′M

][
ν†

S′ (U)†
TS′ (U†)†

S′S

]
. (7.13)

Comparing this to (5.25) we obtain

〈S|c†
M c†

S c†
N c†

T |S〉 = 〈S|c†
M c†

T |S〉〈S|c†
S c†

N |S〉−〈S|c†
M c†

N |S〉〈S|c†
S c†

T |S〉. (7.14)

Splitting multi-indices back into the spin and site ones we come to

〈S|c†
µ(m)c†

σ(s)c†
ν(n)cτ(t)|S〉 = 〈S|c†

µ(m)cτ(t)|S〉〈S|c†
ν(n)cσ(s)|S〉−

−〈S|c†
µ(m)cν(n)|S〉〈S|c†

σ(s)cτ(t)|S〉, (7.15)
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i.e. the four-point averages are expressed in terms of two-point ones. Remark, that this is an exact relation which is
not the case for all Fock state. Here it has been derived for the particular class of states set by (5.15) and (5.16).

By use of (7.14) we write (7.9) as

〈S|c†
µ(m)cν(n)c†

σ(s)cτ(t)|S〉 = 〈S|c†
µ(m)cν(n)|S〉〈S|c†

σ(s)cτ(t)|S〉−

−〈S|c†
µ(m)c†

τ(t)|S〉〈S|c†
ν(n)c†

σ(s)|S〉+

+δσνδsn〈S|c†
µ(m)cτ(t)|S〉. (7.16)

7.3 Direct and Exchange Energies

Substituting (7.16) into (7.5) we obtain

1
2

∫
V (r1 − r2)〈S|ρ(r1)ρ(r2)|S〉dr1dr2 =

∑
mn

∑
i j

Vmni j〈S|c†
µ(m)cµ(n)|S〉 · 〈S|c†

ν(i)cν( j)|S〉−

−∑
mn

∑
i j

Vmni j〈S|c†
µ(m)cν( j)|S〉 · 〈S|c†

ν(i)cµ(n)|S〉+

+∑
mn

∑
i j

Vmni jδni〈S|c†
µ(m)cµ( j)|S〉. (7.17)

By use of (7.6) we modify the first term of this expression into∑
mn

∑
i j

Vmni j〈S|c†
µ(m)cµ(n)|S〉 · 〈S|c†

ν(i)cν( j)|S〉 = 1
2

∫
V (r1 − r2)ρcl(r1)ρcl(r2)dr1dr2. (7.18)

Collecting everything in (7.2) we come to

E = 1
2

∫
V (r1 − r2)

[
ρcl(r1)−ρe

][
ρcl(r2)−ρe

]
dr1dr2︸ ︷︷ ︸

direct interaction energy ED

+

+∑
mn

∑
i j

Vmni jδni〈S|c†
µ(m)cµ( j)|S〉−∑

mn

∑
i j

Vmni j〈S|c†
µ(m)cν( j)|S〉 · 〈S|c†

ν(i)cµ(n)|S〉︸ ︷︷ ︸
exchange interaction energy EX

, (7.19)

i.e. the electron-electron interaction energy is split into direct and exchange energies.
Rewriting the direct energy in the Fourier form we obtain

ED =π
∫

V (k)
[
ρcl(−k)−2πρeδ(−k)

][
ρcl(k)−2πρeδ(k)

]
dk =

=π
∫

e−
1
2 `

2k2
V (k)

[
ρ̂cl(−k)−2πρeδ(−k)

][
ρ̂cl(k)−2πρeδ(k)

]
dk. (7.20)

We proceed to express the exchange energy in terms of field averages. Substituting (7.8) we write

EX = 1
4π

∫
e−

1
2 `

2k2
V (k)dk

∑
m
〈S|c†

µ(m)cµ(m)|S〉−

−∑
mn

∑
st

1
4π

∫
e−

1
2 `

2k2
V (k)〈m|e+ikX |n〉〈s|e−ikX |t〉〈S|c†

µ(m)cν(t)|S〉〈S|c†
ν(s)cµ(n)|S〉dk, (7.21)

where in the first line we used the fact that the states |n〉 form the complete set in the lowest Landau level.
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We now need to express 〈S|c†
µ(m)cν(n)|S〉 in terms of field averages. For this purpose we use∫

〈m|e−ikX |n〉〈s|e+ikX |t〉dk = 2π`−2δmtδns, (7.22)

which allows to revert (4.26) into

c†
µ(m)cν(n)= `2

∫
〈n|e+ikX |m〉D̂νµ(k)dk, (7.23)

where from we obtain
〈S|c†

µ(m)cν(n)|S〉 = `2
∫
〈n|e+ikX |m〉D̂cl

νµ(k)dk. (7.24)

Adjusting this for using in the first line of (7.21) we obtain∑
n
〈S|c†

µ(n)cµ(n)|S〉 = 2πD̂cl
µµ(k → 0)=

= 2π`2
∫

D̂cl
µσ(−k′)D̂cl

σµ(k′)dk′ (7.25)

where the second equality follows from (5.30).
We then rewrite (7.19) as

EX = `2

2

∫
e−

1
2 `

2k2
V (k)dk

∫
D̂cl
µσ(−k′)D̂cl

σµ(k′)dk′−

− `4

4π

∑
n

∫
e−

1
2 `

2k2
V (k)〈n|e+ik′′X e−ikX e+ik′X e+ikX |n〉D̂cl

νµ(k′)D̂cl
µν(k′′)dkdk′dk′′. (7.26)

Employing the Baker-Campbell-Hausdorff formula together with (3.22) we find∑
n
〈n|e+ik′′X e−ikX e+ik′X e+ikX |n〉 = 2π`−2e−i`2k∧k′

δ(k′+k′′), (7.27)

and pass to

EX = 1
2 π

∫ [
VX (0)−VX (k)

]
D̂cl
µν(−k)D̂cl

νµ(k)dk, (7.28)

where we have introduced the notation

VX (k)= `2

π

∫
e+i`2k∧k′

e−
1
2 `

2k′2
V (k′)dk′. (7.29)

As follows from (5.32) we have

D̂cl
µν(k)= 1

N
δµν ρ̂cl(k)+ (λa)µν Îcl

a (k). (7.30)

Combining this with (4.15) we obtain

D̂cl
µν(−k)D̂cl

νµ(k)= 1
N
ρ̂cl(−k)ρ̂cl(k)+2 Îcl

a (−k) Îcl
a (k), (7.31)

and the final expression for the exchange energy appears as

EX =π
∫ [

VX (0)−VX (k)
]{

Îa
cl(−k) Îa

cl(k)+ 1
2N

ρ̂cl(−k)ρ̂cl(k)
}

dk. (7.32)

For the hard-core and Coulomb interactions we have

V (r1 − r2)= δ(r1 − r2) ⇒ V (k)= 1
2π

⇒ VX (k)= 1
π

e−
1
2 `

2k2
, (7.33a)

V (r1 − r2)= 1
|r1 − r2|

⇒ V (k)= 1
k

⇒ VX (k)=
p

2π`e−
1
4 `

2k2
I0( 1

4`
2k2), (7.33b)

where I0 is the modified Bessel function.
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7.4 Exchange Energy and Non-Commutative CP Models

We take closer look at the exchange energy. In particular, we proceed to reveal the non-commutative constructions
hidden in the exchange energy.

For this purpose we consider the system at ν = 1 described by the Fock state |S〉. The corresponding core field
averages ρ̂cl(r) =S|ρ̂(r)|S〉 and Îcl

a (r) = 〈S|Îa(r)|S〉 can be expressed via the underlying non-commutative CPN−1

field fµ(r). Let fµ ≡O[ fµ] be the corresponding Weyl operator. We then have the relation

〈S|c†
µ(m)cν(n)|S〉 = 〈n|fνf†µ|m〉. (7.34)

Rigorous derivation of this relation is bit lengthy, and therefore here we only verify its validity. In particular, we
know that the quantities 〈S|c†

µ(m)cν(n)|S〉 must satisfy the relation (5.29). We demonstrate that (5.29) follows from
(6.34) what we accept as verification of the later. We have

N∑
σ=1

∞∑
s=0

〈S|c†
µ(m)cσ(s)|S〉〈S|c†

σ(s)cν(n)|S〉 =
N∑
σ=1

∞∑
s=0

〈s|fσf†µ|m〉〈n|fνf†σ|s〉 =

=
N∑
σ=1

∞∑
s=0

〈n|fνf†σ|s〉〈s|fσf†µ|m〉 =
N∑
σ=1

∞∑
s=0

〈n|fνf†σfσf†µ|m〉. (7.35)

Using here the normalization condition f†f= I we come to

N∑
σ=1

∞∑
s=0

〈S|c†
µ(m)cσ(s)|S〉〈S|c†

σ(s)cν(n)|S〉 = 〈n|fνf†µ|m〉 =

= 〈S|c†
µ(m)cν(n)|S〉. (7.36)

Employing (6.34) together with (7.8) in (7.19) we find

EX = 1
4π

∫
e−

1
2 `

2k2
V (k)Tr

{
fµf

†
µ− e+ikX fµf

†
νe−ikX fνf

†
µ

}
dk. (7.37)

Remark that the two terms in braces cancel out each other for k = 0, what in r space means the convergence of the
corresponding integral. Therefore we may change the order of operators under the sign of trace so to maintain this
cancelation. We then bring this expression to

EX = 1
4π

∫
e−

1
2 `

2k2
V (k)Tr

{
I− f†µe+ikX fµf

†
νe−ikX fν

}
dk. (7.38)

Reformulating in terms of fµ(r) this appears as

EX = 1
8π2`2

∫
e−

1
2 `

2k2
V (k)dk

∫ {
1− f †

µ ? e+ikr? fµ? f †
ν ? e−ikr? fν

}
dr, (7.39)

where the non-commutative structure is evident.
It is instructive to study the low-momentum expansion (k ∼ 0) in (7.38). This is done by expanding the exponents

e+ikX = 1+ ikn Xn − 1
2 kmkn Xm Xn +O(k3). (7.40)

Substituting into (7.38) the terms linear in kn disappear. Assuming the rotation invariance of V (k) and integrating
over the polar angle we come to

EX = 1
4

∫
k3e−

1
2 `

2k2
V (k)dk︸ ︷︷ ︸

≡Js

Tr
{
f†µXn Xnfµ− f†µXnfµf

†
νXnfν

}
. (7.41)

By explicit calculation we can verify that this can be rewritten as

EX = JsTr
{[
f†µ, Xn

][
Xn, fµ

]− f†µ
[
Xn, fµ

]
f†ν

[
Xn, fν

]}
. (7.42)
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The reason for such formulation is that the commuting any Weyl operator O[ f ] with Xn is equivalent to differentiat-
ing the corresponding symbol f (r), see (3.31). We then rewrite (7.42) further as

EX = Js`
2Tr

{
(∂nf

†
µ)(∂nfµ)+ (f†µ∂fµ)(f†ν∂fν)

}
. (7.43)

Remark that the model defined by the energy functional (7.43) is known as the non-commutative CP model.
This model used to be written artificially as a mere generalizations of the commutative CP models, while here we
have shown that they emerge as the lowest-order term in the derivative expansion of the exchange four-fermion
interaction, irrespectively of the particular form of V (r).

We can use the non-commutative CP model (7.43) as an effective Hamiltonian for the Goldstone modes describing
fluctuations of CP field around the ground state. Such fluctuations occur without density excitation ρcl(r)−ρe = 0,
thus minimizing the direct energy as ED = 0. Once the density fluctuations are absent, the CP field satisfies

fσf
†
σ = f†σfσ = I, (7.44)

as it appears in the definition of non-commutative CP models.

Problems

(7.a) Derive (7.8) from (7.6).

(7.b) Check (7.11).

(7.c) Derive (7.20).

(7.d) Derive (7.25).



Chapter 8

GROUND STATE AND ELEMENTARY EXCITATIONS

8.1 Ground State and Spontaneous Symmetry Breaking

We have shown that the energy of electron-electron interaction splits into direct and exchange pieces

E = ED +EX , (8.1)

where ED and EX are given by (7.18) and (7.30) respectively. For our purposes it is reasonable to rewrite those in a
bit different way. Since ρcl(r) is real we have ρcl(−k) = [ρcl(k)]∗ i.e. ρ̂cl(−k) = [ρ̂cl(k)]∗. The same is true for isospin
fields, i.e. Îa

cl(−k)= [Îa
cl(k)]∗. Then the direct and exchange energies can be written as

ED =π
∫

e−
1
2 `

2k2
V (k)

∣∣ρ̂cl(k)−2πρeδ(k)
∣∣2dk, (8.2a)

EX =π
∫ [

VX (0)−VX (k)
]{∣∣Îa

cl(k)
∣∣2 + 1

2N
∣∣ρ̂cl(k)

∣∣2}
dk. (8.2b)

It is remarkable that, though the Hamiltonian (7.1) does not involve the isospin variables, the energy of a Fock state
does so, and this dependence arises due to exchange interaction.

From these expressions we can already carry out physical conclusions about the structure of the ground state.
Let us first point out that both of (8.2) are non-negatively defined if the interaction is repulsive. Indeed, for repulsive
interactions we have V (k) Ê 0, hence the direct energy is explicitly non-negative. For the exchange energy potential
VX (k) we have

∣∣VX (k)
∣∣= `2

π

∣∣∣∣∫ e+i`2k∧k′
e−

1
2 `

2k′2
V (k′)dk′

∣∣∣∣É

É `2

π

∫ ∣∣∣e+i`2k∧k′
V (k′) e−

1
2 `

2k′2 ∣∣∣dk′ = `2

π

∫
V (k′) e−

1
2 `

2k′2
dk′ =VX (0). (8.3)

Provided VX (0)> 0 we have VX (0)−VX (k)> 0, hence the exchange energy is also non-negative.
From ED Ê 0 it follows that the lower bound of the direct energy is zero, and this bound is attained at

ρ̂cl(k)= 2πρLνδ(k), (8.4)

what implies the density is homogeneous ρcl(r)= ρe = ρLν. We consider the cases of integer fillings what corresponds
to ν being an integer. Provided an electron can have N different polarizations (µ= 1,2, . . . , N) the maximal value of
ν is N. Fillings with ν= 0 and ν= N are trivial: ν= 0 implies there are no electrons at all, while ν= N means that
no vacant states are available what excludes any nontrivial dynamics because of Pauli exclusion principle. Therefore
we assume ν= 1,2, . . . , N −1.

The relation (8.4) implies that every Landau site accommodates exactly ν electrons, but says nothing about the
polarizations of those electrons. The later is governed by EX to be minimal. This is attained at

Îa
cl(k)= 2πρLJaδ(k), (8.5)

where Ja is an arbitrary constant vector. Indeed, the relation (8.5) together with (8.4) leads to EX = 0 what is the
lower bound of the exchange energy.

Summarizing, the configurations (8.4) and (8.5) correspond to the absolute minimum of E = 〈S|He|S〉 what is the
true ground state of the system. Our results indicate that the ground state is attained when all isospins are aligned
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along an arbitrary direction Ja in SU(N) space. This is the manifestation of spontaneous symmetry breaking which
in this particular system occurs due to the exchange interaction hidden in the four-fermion interaction (7.1).

We now present the Fock state corresponding to the ground state set by (8.4) and (8.5). For the sake of simplicity
we take ν= 1. In this case each Landau site comprises one electron and the Fock state looks as

|g〉 =
∞∏

n=0
gµc†

µ(n) · |∅〉, (8.6)

where the n-independent vector gµ determines the polarization in isospin space. It is normalized as

ḡσgσ = 1, (8.7)

so the ground state (8.6) is normalized as 〈g|g〉 = 1.
The state (8.6) is the eigenstate of the particle density operator. If more precisely, we have the relation

c†
µ(m)cµ(n)|g〉 = δmn|g〉, (8.8)

what leads to
ρ(r)|g〉 = ρL|g〉, (8.9)

and further to
He|g〉 = 0. (8.10)

The later implies that (8.6) is the eigenstate of the interaction Hamiltonian (7.1).
Further we have

〈g|c†
µ(m)cν(n)|g〉 = ḡµgνδmn, (8.11)

where from we come to (8.4) with ν= 1 and to (8.5) with Ja = 1
2 g†λa g. In the configuration space these lead to

ρcl(r)= ρ̂cl(r)= ρL, (8.12a)

Ia
cl(r)= Îa

cl(r)= 1
2ρL g†λa g. (8.12b)

Remark, that the core and physical fields coincide since they are all spatially homogeneous.

8.2 Hole and Electron Excitations

In previous chapter we have introduced the Fock state corresponding to the ground state of N-component electron
state at filling ν = 1. We now proceed to discuss the Fock states representing elementary excitation emerging over
this ground state. First, we consider the case of N = 2, i.e. up-spin and down-spin electrons, hence the only nontrivial
filling is ν= 1. Second, we assume the vector gµ determining the polarization of the ground state is (g↑, g↓) = (1,0),
i.e. spins are polarized in z-direction (even if it is not so, we can perform the rotation of spin space thus aligning gµ
along the spin z-axis). Thus the ground state appears as

|g〉 =
∞∏

n=0
c†
↑(n) · |∅〉, (8.13)

what can be presented graphically as

|g〉 =

In accord with (8.12) the corresponding only nonvanishing classical fields are

ρcl(r)= ρ̂cl(r)= ρL, (8.14a)

Iz
cl(r)= Îz

cl(r)= 1
2ρL. (8.14b)

We first discuss the simplest excited stats which are hole and electron states and the generalize these to skyrmion
and antiskyrmion states.
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Hole-excited state is obtained by removing an electron from the ground state. For the sake of simplicity we
assume this is the electron at n = 0. Electron state is constructed by accommodating an extra electron on the site
with n = 0. Provided n = 0 is already occupied by an up-spin electron only down-spin electron can be added. These
can be depicted graphically as

|s−〉 =

|s+〉 =

These are expressed analytically by

|s−〉 = c↑(0)|g〉 =
∞∏

n=1
c†
↑(n) · |∅〉, (8.15a)

|s+〉 = c†
↓(0)|g〉 = c†

↓(0)
∞∏

n=0
c†
↑(n) · |∅〉, (8.15b)

which obviously belong to the class of Fock states set by (5.15) and (5.16). Therefore the corresponding direct and
exchange energies can be calculated by use of (8.2), hence we only need to calculate the averages ρ̂cl(k) and Îa

cl(k).
For this purpose we use

〈s−|c†
µ(m)cν(n)|s−〉 = δµ↑δν↑(δmn −δm0δn0), (8.16a)

〈s+|c†
µ(m)cν(n)|s+〉 = δµ↑δν↑δmn +δµ↓δν↓δm0δn0. (8.16b)

We then use
D̂cl
µν(k)= 1

2π

∑
mn

〈m|e−ikX |n〉〈s±|c†
ν(m)cµ(n)|s±〉 (8.17)

and find

D̂cl−
µν (k)= δµ↑δν↑`−2δ(k)− 1

2π
δµ↑δν↑e−

1
4 `

2k2
, (8.18a)

D̂cl+
µν (k)= δµ↑δν↑`−2δ(k)+ 1

2π
δµ↓δν↓e−

1
4 `

2k2
, (8.18b)

where we have used 〈n|eikX |n〉 = e−
1
4 `

2k2
Ln( 1

2`
2k2) and Tr

[
eikX ]= 2π`−2δ(k); see (3.17) and (3.22).

From (8.5) we find Îx
cl(k)= Î y

cl(k)= 0 while the only nonvanishing averages are

ρ̂±cl(k)= 1
`2 δ(k)± 1

2π
e−

1
4 `

2k2
, (8.19a)

Îz
cl±(k)= 1

2`2 δ(k)− 1
4π

e−
1
4 `

2k2
, (8.19b)

where the first terms are the ground state values, hence the second ones represent the excitation parts.
In the configuration space these appear as

ρ̂±cl(r)= 1±2e−r2/`2

2π`2 ⇒ ρ±cl(r)= 1± e−
1
2 r2/`2

2π`2 , (8.20a)

Îz
cl±(r)= 1−2e−r2/`2

4π`2 ⇒ Iz
cl±(r)= 1− e−

1
2 r2/`2

4π`2 . (8.20b)
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x y x y

x

y

Fig. 8.1: Upper panel shows particle densities for hole (left) and electron (right) excitations. Lower panel shows spin distribution
which is identical for hole and electron excitations.

Remark, that the core density of hole-excited state may become negative, while the corresponding physical one is
strictly positive. In figure (8.1) we present the spatial plots for density and spin textures.

Total interaction energies (E = ED +EX ) for hole and electron states are identical and look as

E± = 1
4π

∫
e−

1
2 `

2k2
V (k)dk. (8.21)

Thus, removing an electron from the ground state or adding to it causes the increase of Coulomb energy. Such
an excitation will expectedly affect neighbouring electrons, which may modify their spin polarizations coherently
and thus lower the Coulomb energy. The resulting configurations are referred to as the quantum Hall skyrmions
discussed in the next section.

8.3 Skyrmions

Originally the Fock state describing coherent excitations of spins in the lowest Landau level was proposed by Fertig
et al. (PRB 50, 1994) in the form

|S−〉 =
{ ∞∏

n=0

[
c†
↓(n)sinϑn + c†

↑(n+1)cosϑn
]}|∅〉, (8.22)

where ϑn are real parameters to be fixed by minimizing the Coulomb energy.
Remind that larger is n, the corresponding one-particle state is localized more away from the origin. Therefore,

requiring the core field averages with respect to (8.22) approach the ground state values at spatial infinity we come
to the condition

lim
n→∞ϑn = 0. (8.23)
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In that case the large-n content of (8.22) consists of exclusively up-spin electrons and consequently reproduces the
ground state at spatial infinity.

In what follows we show that the skyrmion state (8.22) can be brought to the form given by (5.15) and (5.16).
Motivation is twofold: (a) once the skyrmion Fock states fall in that category, all the results obtained for that category
can be employed; (b) this will reveal the algebraic structure of quantum Hall skyrmions what makes the essence of
these configurations more transparent.

Consider the element of W-algebra given by

W− =
∞∑

n=0
W−(n), (8.24)

where
iW−(n)=ϑn

[
c†
↓(n)c↑(n+1)− c†

↑(n+1)c↓(n)
]
, (8.25)

with ϑn the ones introduced in (8.22).
The operator eiW−

can be factorized

eiW− = eiW−(0)+iW−(1)+iW−(2)+··· = eiW−(0)eiW−(1)eiW−(2) · · · , (8.26)

due to the fact that
[
W−(m),W−(n)

]= 0.
Apply the operator eiW−

to the hole-excited state (8.15a). Employing eiW−
e−iW− = 1 together with eiW− |∅〉 = |∅〉

we proceed as follows

eiW− |s−〉 = eiW−[
c†
↑(1)c†

↑(2)c†
↑(3) · · ·]|∅〉 =

=
{[

eiW−
c†
↑(1)e−iW−][

eiW−
c†
↑(2)e−iW−][

eiW−
c†
↑(3)e−iW−]}|∅〉 =

∞∏
n=0

ξ†(n) · |∅〉, (8.27)

where
ξ†(n)≡ eiW−

c†
↑(n+1)e−iW−

. (8.28)

Remark, that [W−(m), c†
↑(n+1)] = 0 for all m except when m = n. Besides due to

[
W−(m),W−(n)

] = 0 all multi-
plicatives in the right hand side of (8.16) commute among each other and therefore can be arranged arbitrarily. We
then have

ξ†(n)= eiW−
c†
↑(n+1)e−iW− = eiW−(n)c†

↑(n+1)e−iW−(n). (8.29)

In order to calculate the right hand side of this expression let us differentiate with respect to ϑn

ξ̇†(n)= deiW−(n)

dϑn
c†
↑(n+1)e−iW−(n) + eiW−(n)c†

↑(n+1)
de−iW−(n)

dϑn
=

= eiW−(n) i
dW−(n)

dϑn
c†
↑(n+1)e−iW−(n) − eiW−(n)c†

↑(n+1)i
dW−(n)

dϑn
e−iW−(n) =

= eiW−(n)
[

i
dW−(n)

dϑn
, c†

↑(n+1)
]

e−iW−(n) =

= eiW−(n)[c†
↓(n)c↑(n+1)− c†

↑(n+1)c↓(n), c†
↑(n+1)

]
e−iW−(n) = eiW−(n)c†

↓(n)e−iW−(n). (8.30)

Differentiating once again and performing similar manipulations we find

ξ̈†(n)=−eiW−(n)c†
↑(n+1)e−iW−(n) ⇒ ξ̈†(n)+ξ†(n)= 0. (8.31)

Form (8.28) and (8.30) we find that the values of ξ†(n) and ξ̇†(n) at ϑn = 0 are c†
↑(n+1) and c†

↓(n) respectively. Hence
the differential equation (8.31) is integrated as

ξ†(n)= c†
↓(n)sinϑn + c†

↑(n+1)cosϑn, (8.32)
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i.e. the right hand side of (8.27) coincides with (8.22).
Summarizing, the skyrmion Fock state (8.22) is expressed as

|S−〉 = eiW− |s−〉, (8.33)

i.e the quantum Hall skyrmion is nothing else but the W-transformation of the hole-excited state, and the structure
set by (5.15) and (5.16) is evident.

This construction can be generalized to multi-skyrmion (or q-skyrmion) states by removing q electrons from the
ground state and then applying the W-transformation

|Sq
−〉 = eiW−

c↑(0)c↑(1) · · · c↑(q−1)|g〉, (8.34a)

iW− =∑
n
ϑn

[
c†
↓(n)c↑(n+ q)− c†

↑(n+ q)c↓(n)
]
. (8.34b)

Performing the manipulations analogous to (8.26) – (8.31) we can bring the q-skyrmion state (8.34a) to the form

|Sq
−〉 =

∞∏
n=0

ξ†(n) · |∅〉, (8.35a)

ξ†(n)= c†
↓(n)sinϑn + c†

↑(n+ q)cosϑn. (8.35b)

In a single skyrmion (q = 1) configuration only the nearest neighbouring sites (n and n+1) are mixed in ξ(n). For
q = 2 the mixing appears among the sites with even n and separately among the ones with odd n, while no mixing
appears among even and odd sites. In this sense there arise two separate chains of mixed sites where the above steps
can be carried out separately. In the case of general q there are q separate chains, so nothing essentially new occurs.

8.4 Antiskyrmions

In the analogy with q-skyrmions the q-antiskyrmions are introduced as W-transformation of a q-electron state

|Sq
+〉 = eiW+

c†
↓(0)c†

↓(1) · · · c†
↓(q−1)|g〉, (8.36a)

iW+ =∑
n
θn

[
c†
↓(n+ q)c↑(n)− c†

↑(n)c↓(n+ q)
]
, (8.36b)

where θn → 0 is assumed for n →∞ thus guaranteeing the corresponding field averages approach the ground state
values asymptotically.

Denoting
iW+(n)= θn

[
c†
↓(n+ q)c↑(n)− c†

↑(n)c↓(n+ q)
]
, (8.37)

we find
eiW+ = eiW+(0)+iW+(1)+iW+(2)+··· = eiW+(0)eiW+(1)eiW+(2) · · · , (8.38)

as follows from [W+(m),W+(n)] = 0. Besides, W+(n) comprise the down-spin creators only with n Ê q, and therefore
they all commute with c†

↓(n) with n = 0,1, . . . , q−1. Consequently we can rewrite (8.36a) as
Then the state (8.36) can be written as

|Sq
+〉 = c†

↓(0)c†
↓(1) · · · c†

↓(q−1)eiW+ |g〉 =

= c†
↓(0)c†

↓(1) · · · c†
↓(q−1)eiW+[

c†
↑(0)c†

↑(1)c†
↑(2) · · ·

]
|∅〉 =

= c†
↓(0)c†

↓(1) · · · c†
↓(q−1)

{[
eiW+

c†
↑(0)e−iW+][

eiW+
c†
↑(1)e−iW+][

eiW+
c†
↑(2)e−iW+] · · ·}|∅〉. (8.39)

Employing the same trick as in skyrmion case we obtain

eiW+
c†
↑(n)e−iW+ = eiW+(n)c†

↑(n)e−iW+(n) = c†
↑(n)cosθn + c†

↓(n+ q)sinθn, (8.40)
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hence

|Sq
+〉 = c†

↓(0)c†
↓(1) · · · c†

↓(q−1)
{ ∞∏

n=0

[
c†
↑(n)cosθn + c†

↓(n+ q)sinθn
]}|∅〉. (8.41)

For the sake of further convenience we rewrite this in the form close to that of q-skyrmion given by (8.35). For this
purpose we introduce

ζ†(n)= c†
↑(n− q)cosθn−q + c†

↓(n)sinθn−q, (8.42)

with convention cosθn = 0 for n < 0. Then the q-antiskyrmion state can be presented as

|Sq
+〉 =

∞∏
n=0

ζ†(n) · |∅〉. (8.43)

Recall the relation (6.20) stating that the number of extra particles brought by excitations is related to the topo-
logical charge of the corresponding NC Grassmannian field as Q =−∆N. Besides, as argued in section 5.1, amount
of particles comprised in a Fock state is unaffected when W-transformation applied. Therefore, the amount extra
particles (compared to that in the ground state) in skyrmion and antiskyrmion states are ∆N = −q and ∆N = +q
respectively. Therefore we can predict that the corresponding NC Grassmannian will carry the topological charges
Q =+q and Q =−q respectively. This point is considered in the subsequent sections.

8.5 Two-Point Averages

In order to construct the particle and isospin densities for skyrmion and antiskyrmion configurations, as well as the
underlying NC CP fields, we need to calculate the averages 〈S|c†

µ(m)cν(n)|S〉 with respect to these states.
We present the detailed calculations for q-skyrmions. Let us first remark that{

cµ(m),ξ†(n)
}= {

cµ(m), c†
↓(n)sinϑn + c†

↑(n+ q)cosϑn
}=

= δµ↓δmn sinϑn +δµ↑δm,n+q cosϑn. (8.44)

For m < q we have
{
c↑(m),ξ†(n)

}= 0 hence
c↑(m)|Sq

−〉 = 0. (8.45)

For m Ê q we use (8.44) and proceed as follows

c↑(m)|Sq
−〉 = c↑(m)

{
ξ†(0)ξ†(1) · · ·ξ†(m− q−1)ξ†(m− q)ξ†(m− q+1) · · ·}|∅〉 =

= (−1)m−q{
ξ†(0)ξ†(1) · · ·ξ†(m− q−1)c↑(m)ξ†(m− q)ξ†(m− q+1) · · ·}|∅〉. (8.46)

In accord with (8.44) we have
c↑(m)ξ†(m− q)= cosϑm−q −ξ†(m− q)c↑(m), (8.47)

and pass to

c↑(m)|Sq
−〉 = (−1)m−q cosϑm−q

{
ξ†(0)ξ†(1) · · ·ξ†(m− q−1)ξ†(m− q+1) · · ·}|∅〉−

− (−1)m−q{
ξ†(0)ξ†(1) · · ·ξ†(m− q−1)ξ†(m− q)c↑(m)ξ†(m− q+1) · · ·}|∅〉, (8.48)

where the second term vanishes since c↑(m) commutes with all ξ-operators on the right and can be brought to |∅〉.
We thus obtain

c↑(m)|Sq
−〉 = (−1)m−q cosϑm−q

{
ξ†(0)ξ†(1) · · ·ξ†(m− q−1)ξ†(m− q+1) · · ·}|∅〉. (8.49)

On the other hand, using
{
ξ(m),ξ†(n)

}= δmn and ξ(m)|∅〉 = 0 we find

ξ(m− q)|Sq
−〉 = (−1)m−q{

ξ†(0)ξ†(1) · · ·ξ†(m− q−1)ξ†(m− q+1) · · ·}|∅〉. (8.50)

Comparing this to (8.49) we find
c↑(m)|Sq

−〉 = cosϑm−qξ(m− q)|Sq
−〉, (8.51)

which can be extended to all m, thus embracing (8.45), with the convention cosϑn<0 = 0.
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Performing similar manipulations for c↓(m)|Sq−〉 we find

c↓(m)|Sq
−〉 = sinϑmξ(m)|Sq

−〉. (8.52)

Summarising, the averages 〈Sq−|c†
µ(m)cν(n)|Sq−〉 can be expressed in terms of 〈Sq−|ξ†(m)ξ(n)|Sq−〉 which due to{

ξ†(m),ξ(n)
}= δmn are given by 〈Sq−|ξ†(m)ξ(n)|Sq−〉 = δmn.

Then the only non-vanishing components of 〈Sq−|c†
µ(m)cν(n)|Sq−〉 appear as

〈Sq
−|c†

↑(m)c↑(n)|Sq
−〉 = δmn cos2ϑn−q, (8.53a)

〈Sq
−|c†

↑(m)c↓(n)|Sq
−〉 = δm,n+q cosϑn sinϑn, (8.53b)

〈Sq
−|c†

↓(m)c↑(n)|Sq
−〉 = δn,m+q cosϑm sinϑm, (8.53c)

〈Sq
−|c†

↓(m)c↓(n)|Sq
−〉 = δmn sin2ϑn, (8.53d)

where the convention cosϑn<0 = 0 is adopted.
Similar calculation for antiskyrmions lead to

〈Sq
+|c†

↑(m)c↑(n)|Sq
+〉 = δmn cos2θn, (8.54a)

〈Sq
+|c†

↑(m)c↓(n)|Sq
+〉 = δn,m+q cosθm sinθm (8.54b)

〈Sq
+|c†

↓(m)c↑(n)|Sq
+〉 = δm,n+q cosθn sinθn (8.54c)

〈Sq
+|c†

↓(m)c↓(n)|Sq
+〉 = δmn sin2θn−q (8.54d)

with the convention cosθn<0 = 0.

8.6 Classical Fields

We calculate classical fields describing particle and spin densities corresponding to skyrmion and antiskyrmion states
set by (8.35) and (8.43). For the physical fields we have

ρcl(r)= ∑
mn

〈r|0,n〉〈0,m|r〉〈Sq
±|c†

µ(m)cµ(n)|Sq
±〉, (8.55a)

Icl
a (r)= 1

2 (σa)µν
∑
mn

〈r|0,n〉〈0,m|r〉〈Sq
±|c†

µ(m)cν(n)|Sq
±〉. (8.55b)

Using here (2.23) for 〈r|0,n〉 together with (8.53) we find the skyrmion fields to be (with x+ i y= re+iφ)

ρcl(r)= 1
2π`2 e−

1
2 `

−2r2 ∞∑
n=0

cos2ϑn−q +sin2ϑn

n!

[
r2

2`2

]n

, (8.56a)

Icl
z (r)= 1

4π`2 e−
1
2 `

−2r2 ∞∑
n=0

cos2ϑn−q −sin2ϑn

n!

[
r2

2`2

]n

, (8.56b)

Icl
x (r)= +cos(qφ)

2π`2

[
rp
2`

]q

e−
1
2 `

−2r2 ∞∑
n=0

cosϑn sinϑn√
n!(n+ q)!

[
r2

2`2

]n

, (8.56c)

Icl
y (r)= −sin(qφ)

2π`2

[
rp
2`

]q

e−
1
2 `

−2r2 ∞∑
n=0

cosϑn sinϑn√
n!(n+ q)!

[
r2

2`2

]n

. (8.56d)
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The same with (8.54) for antiskyrmions leads to

ρcl(r)= 1
2π`2 e−

1
2 `

−2r2 ∞∑
n=0

cos2θn−q +sin2θn

n!

[
r2

2`2

]n

, (8.57a)

Icl
z (r)= −1

4π`2 e−
1
2 `

−2r2 ∞∑
n=0

cos2θn−q −sin2θn

n!

[
r2

2`2

]n

, (8.57b)

Icl
x (r)= +cos(qφ)

2π`2

[
rp
2`

]q

e−
1
2 `

−2r2 ∞∑
n=0

cosθn sinθn√
n!(n+ q)!

[
r2

2`2

]n

, (8.57c)

Icl
y (r)= +sin(qφ)

2π`2

[
rp
2`

]q

e−
1
2 `

−2r2 ∞∑
n=0

cosθn sinθn√
n!(n+ q)!

[
r2

2`2

]n

. (8.57d)

Typical spin textures of skyrmion and antiskyrmion excitations are depicted in figure 8.2.

x

y

x

y

Fig. 8.2: Typical spin textures for skyrmion (upper panel) and antiskyrmion (lower panel) excitations.
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8.7 Non-Commutative CP1 Fields

In this section we construct the non-commutative CP1 fields associated with skyrmion and antiskyrmion configura-
tions. This is complex-valued two-component column

f (r) =
 f↑(r)

f↓(r)

 , (8.58)

normalized as
f †(r)? f (r)= 1, (8.59)

and giving the desired core averages in accord with

D̂cl
µν(r)= 1

2π`2 fµ(r) ? f ∗ν (r). (8.60)

We attempt to determine fµ(r) provided D̂cl
µν(r) are known. This can be easily calculated in terms of Weyl opera-

tors defined by (3.6). If more precisely, let O[ fµ] and O[D̂cl
µν] be the Weyl operators corresponding to fµ(r) and D̂cl

µν(r).
Then using (3.14) together with O[ f ∗]=O†[ f ] we write the relations (8.59) and (8.60) in terms of Weyl operators as

O†[ fµ]O[ fµ]= I, (8.61a)

O[ fµ]O†[ fν]= 2π`2O[D̂cl
µν]. (8.61b)

If we manage to calculate the Weyl operator O[D̂cl
µν] for skyrmion and antiskyrmion states, we’ll be then able first to

solve out O[ fµ] from (8.61) and subsequently to restore fµ(r).
Employing the definition (3.6) of the Weyl operator we write

O[D̂cl
µν]= 1

2π

∫
D̂cl
µν(k)e+ikX dk, (8.62)

and insert the identity operators |m〉〈m| = I and |n〉〈n = I in the right hand side

O[D̂cl
µν]=∑

m
|m〉〈m|

[
1

2π

∫
D̂cl
µν(k)e+ikX dk

]∑
n
|n〉〈n| =

= ∑
mn

[
1

2π

∫
D̂cl
µν(k)〈m|e+ikX |n〉dk

]
|m〉〈n|. (8.63)

Substituting here

D̂cl
µν(k)= 1

2π

∑
st
〈s|e−ikX |t〉〈S|c†

ν(s)cµ(t)|S〉, (8.64)

and using ∫
〈m|e−ikX |n〉〈s|e+ikX |t〉dk = 2π`−2δmtδns, (8.65)

we come to
2π`2O[D̂cl

µν]= ∑
mn

〈S|c†
ν(n)cµ(m)|S〉 · |m〉〈n|. (8.66)

Hence, with quantities 〈Sq
±|c†

ν(n)cµ(m)|Sq
±〉 already calculated we can explicitly construct the Weyl operator O[D̂cl

µν].
We then solve out O[ fµ] from (8.61) in |n〉-basis and subsequently restore the non-commutative field fµ(r) by use of
the relation [Harvey, hep-th/0102076]

|n+α〉〈n| = 2α+1 (−1)npn!p
(n+α)!

O
[
zα e−`

−2r2
Lα

n(2`−2r2)
]
, (8.67)

where
p

2z ≡ `−1(x+ i y), and Lα
n is the generalized Laguerre polynomial.
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Skyrmions

Employing (8.53) we find

2π`2O[D̂cl
↑↑]=

∞∑
n=0

cos2ϑn|n+ q〉〈n+ q|, (8.68a)

2π`2O[D̂cl
↑↓]=

∞∑
n=0

cosϑn sinϑn|n+ q〉〈n|, (8.68b)

2π`2O[D̂cl
↓↑]=

∞∑
n=0

cosϑn sinϑn|n〉〈n+ q|, (8.68c)

2π`2O[D̂cl
↓↓]=

∞∑
n=0

sin2ϑn|n〉〈n|. (8.68d)

Then the equations (8.61) are resolved by

O[ f −↑ ]=
∞∑

n=0
cosϑn|n+ q〉〈n|, (8.69a)

O[ f −↓ ]=
∞∑

n=0
sinϑn|n〉〈n|. (8.69b)

Using (8.67) we find the corresponding non-commutative field in r-space to be

f −↑ (r)= 2e+iqφ(
p

2r/`)q e−r2/`2 ∞∑
n=0

cosϑn
(−1)npn!√

(n+ q)!
Lq

n(2`−2r2), (8.70a)

f −↓ (r)= 2e−r2/`2 ∞∑
n=0

(−1)n sinϑnLn(2r2/`2), (8.70b)

or equivalently

f −(r)= 2e−r2/`2 ∞∑
n=0

(−1)n
{

sinϑnLn(2r2/`2)
 0

1

+ e+iqφ(
p

2r/`)q cosϑn

p
n!√

(n+ q)!
Lq

n(2`−2r2)
 1

0

}
. (8.71)

Antiskyrmions

In order to obtain the analogous expressions for antiskyrmions we use (8.54) which lead to

2π`2O[D̂cl
↑↑]=

∞∑
n=0

cos2θn|n〉〈n|, (8.72a)

2π`2O[D̂cl
↑↓]=

∞∑
n=0

cosθn sinθn|n〉〈n+ q|, (8.72b)

2π`2O[D̂cl
↓↑]=

∞∑
n=0

cosθn sinθn|n+ q〉〈n|, (8.72c)

2π`2O[D̂cl
↓↓]=

∞∑
n=0

sin2θn−q|n〉〈n| =
q−1∑
n=0

|n〉〈n|+
∞∑

n=0
sin2θn|n+ q〉〈n+ q|, (8.72d)

where the convention cosθn<0 = 0, (i.e. sinθn<0 = 1) has been employed.
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These are resolved uniquely by

O[ f +↑ ]=
∞∑

n=0
cosθn|n〉〈n+ q|, (8.73a)

O[ f +↓ ]=
q−1∑
n=0

|n〉〈n|+
∞∑

n=0
sinθn|n+ q〉〈n+ q|, (8.73b)

which by use of (8.67) lead to

f +↑ (r)= 2e−iqφ(
p

2r/`)q e−`
−2r2 ∞∑

n=0
cosθn

(−1)npn!√
(n+ q)!

Lq
n(2`−2r2), (8.74a)

f +↓ (r)= 2e−`
−2r2

{ q−1∑
n=0

(−1)nLn(2`−2r2)+
∞∑

n=0
(−1)n+q sinθnLn+q(2`−2r2)

}
. (8.74b)

8.8 Topological Charge of Skyrmions and Antiskyrmions

Topological charge of a non-commutative CP1-field has been derived in section 6 to be

Q = 1
2π`2

∫ {
f̄µ(r)? fµ(r)− fµ(r)? f̄µ(r)

}
dr, (8.75)

which in terms of the corresponding Weyl operators can be expressed as

Q = Tr
{
O[ f̄µ]O[ fµ]−O[ fµ]O[ f̄µ]

}
. (8.76)

Here we cannot use Tr([A,B])= Tr(AB)−Tr(BA)= 0, which is valid only when Tr(AB) and Tr(BA) are separately
well defined. This is not the case here, i.e. the trace must be calculated after the commutator is resolved. Using
(8.69) we obtain

Q− = Tr
{ ∞∑

n=0
cos2ϑn|n〉〈n|−

∞∑
n=0

cos2ϑn|n+ q〉〈n+ q|
}
. (8.77)

This is inappropriate for calculating the trace, since the separate pieces are divergent due to the behaviour cosϑn → 1
as n →∞, as implied by the boundary condition (4.41a). Rewriting this expression in terms of sinϑn we obtain

Q− = Tr
{
|0〉〈0|+ |1〉〈1|+ · · ·+ |q−1〉〈q−1|−

∞∑
n=0

sin2ϑn
[|n〉〈n|− |n+ q〉〈n+ q|]}, (8.78)

where each piece is well defined since sinϑn → 0 as n →∞. Therefore, the traces can be calculated separately what
eventually gives Q− = q. Similar manipulations for antiskyrmions lead to Q+ =−q. These agree with Q =−∆N.

8.9 Many-Body Wave Functions

We derive many-body wave functions for skyrmion and antiskyrmion states. We consider the system of K+1 available
Landau sites (n = 0, . . . ,K). Ground state of this system at ν= 1 is realized when each Landau site comprises by one
electron, meaning K +1 electrons in total. The corresponding Fock is written as

|g〉 = c†
↑(0)c†

↑(1) · · · c†
↑(K)|∅〉. (8.79)

We start discussing the skyrmion state which is constructed by removing one electron from |g〉 and then perform-
ing W-transformation. This appears as

|S−〉 =
K−1∏
n=0

[
c†
↓(n)sinϑn + c†

↑(n+1)cosϑn

]
|∅〉, (8.80)

and in the limit of ϑn → 0 turns into the hole-excited state

|S−〉 → c†
↑(1) · · · c†

↑(K)|∅〉 = c↑(0)|g〉. (8.81)
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Skyrmion comprises K electrons, and therefore we introduce the K-body quantum mechanical wave function as

S−
µ1···µK

(r1, . . . ,rK )= 〈∅|ψµ1 (r1) · · ·ψµK (rK )|S−〉, (8.82)

where the electron field operator defined over K +1 Landau sites is given by

ψµ(r)= (2π`2)−
1
2 e−

1
2 |z|2

K∑
n=0

αnzncµ(n), (8.83)

with αn ≡ (n!)−
1
2 .

We first calculate the component with µ1 =µ2 = ·· · =µK =↑. It is given by

S−
↑↑···↑(r1, . . . ,rK )= 〈∅|ψ↑(r1) · · ·ψ↑(rK )

K−1∏
n=0

[
sinϑnc†

↓(n)+cosϑnc†
↑(n+1)

]
|∅〉. (8.84)

Remark that in this expression there are K up-spin annihilation operators standing on the left. Therefore, there must
be the same amount of up-spin creation operators on the right, otherwise the matrix element vanishes. Consequently,
the terms "sinϑnc∗↓ (n)" in square brace can be all dropped and we pass to

S−
↑↑···↑(r1, . . . ,rK )=

{
K−1∏
n=0

cosϑn

}
〈∅|ψ↑(r1) · · ·ψ↑(rK )c†

↑(K) · · · c†
↑(2)c†

↑(1)|∅〉. (8.85)

Writing ψ↑(r) explicitly we pass to

S−
↑↑···↑(r1, . . . ,rK )=

{
K−1∏
n=0

cosϑn

}
(2π`2)−

K
2 e−

1
2 (|z1|2+|z2|2+···+|zK |2)×

×〈∅|[α0c↑(0)+α1z1c↑(1)+α2z2
1c↑(2)+·· ·+αK zK

1 c↑(K)
]×

× [
α0c↑(0)+α1z2c↑(1)+α2z2

2c↑(2)+·· ·+αK zK
2 c↑(K)

]×·· ·

· · ·× [
α0c↑(0)+α1zK c↑(1)+α2z2

K c↑(2)+·· ·+αK zK
K c↑(K)

]
c†
↑(K) · · · c†

↑(2)c†
↑(1)|∅〉. (8.86)

The terms α0c↑(0) give no contribution since there is no c†
↑(0) operator among c†

↑(K) · · · c†
↑(2)c†

↑(1). Dropping these
terms and using the anticommutation relations of electron operators, we express the vacuum matrix element as

〈∅|[α1z1c↑(1)+α2z2
1c↑(2)+·· ·+αK zK

1 c↑(K)
]×

×[
α1z2c↑(1)+α2z2

2c↑(2)+·· ·+αK zK
2 c↑(K)

]×·· ·

· · ·×[
α1zK c↑(1)+α2z2

K c↑(2)+·· ·+αK zK
K c↑(K)

]
c†
↑(K) · · · c†

↑(2)c†
↑(1)|∅〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

α1z1 α2z2
1 · · · αK zK

1

α1z2 α2z2
2 · · · αK zK

2
...

...
. . .

...

α1zK α2z2
K · · · αK zK

K

∣∣∣∣∣∣∣∣∣∣∣∣
. (8.87)

Employing the elementary rules of determinant calculus we eventually come to

S−
↑↑···↑(r1, . . . ,rK )= CK · (z1z2 · · · zK )S0(r1, . . . ,rK ), (8.88)

where S0(r1, . . . ,rK ) is the Slater determinant

S0(r1, . . . ,rK )=

∣∣∣∣∣∣∣∣∣∣∣∣

1 z1 · · · zK−1
1

1 z2 · · · zK−1
2

...
...

. . .
...

1 zK · · · zK−1
K

∣∣∣∣∣∣∣∣∣∣∣∣
e−

1
2 (|z1|2+|z2|2+···+|zK |2), (8.89)
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and CK is given by

CK = (2π`2)−
K
2 (α1α2 · · ·αK )

K−1∏
n=0

cosϑn. (8.90)

We now consider the component with µ1 =µ2 = ·· · =µK =↓. It is given by

S−
↓↓···↓(r1, . . . ,rK )= 〈∅|ψ↓(r1) · · ·ψ↓(rK )

K−1∏
n=0

[
sinϑnc†

↓(n)+cosϑnc†
↑(n+1)

]
|∅〉, (8.91)

where the pieces "cosϑnc†
↑(n+1)" can be dropped since the wave operatorsψ↓(z) comprise only down-spin annihilators.

Writing ψ↓(z) explicitly we find

S−
↓↓···↓(r1, . . . ,rK )=

{
K−1∏
n=0

sinϑn

}
(2π`2)−

K
2 e−

1
2 (|z1|2+|z2|2+···+|zK |2)×

×〈∅|[α0c↓(0)+α1z1c↓(1)+α2z2
1c↓(2)+·· ·+αK zK

1 c↓(K)
]×

× [
α0c↓(0)+α1z2c↓(1)+α2z2

2c↓(2)+·· ·+αK zK
2 c↓(K)

]×·· ·

· · ·× [
α0c↓(0)+α1zK c↓(1)+α2z2

K c↓(2)+·· ·+αK zK
K c↓(K)

]
c†
↓(K −1) · · · c†

↓(1)c†
↓(0)|∅〉. (8.92)

Provided there is no c†
↓(K) operator among c†

↓(K −1) · · · c†
↓(1)c†

↓(0), the terms αK zK
K c↓(K) can be dropped in square

braces. Then the matrix elements with respect to the Fock vacuum can be calculated to be

〈∅|[α0z0
1c↓(0)+·· ·+αK−1zK−1

1 c↓(K −1)
]×

×[
α0z0

2c↓(0)+·· ·+αK−1zK−1
2 c↓(K −1)

]×·· ·

· · ·×[
α0z0

K c↓(0)+·· ·+αK−1zK−1
K c↓(K −1)

]
c†
↓(K −1) · · · c†

↓(0)|∅〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

α0z0
1 α1z1

1 · · · αK−1zK−1
1

α0z0
2 α1z1

2 · · · αK−1zK−1
2

...
...

. . .
...

α0z0
K α1z1

K · · · αK−1zK−1
K

∣∣∣∣∣∣∣∣∣∣∣∣
, (8.93)

and after the similar determinant calculus we stop at

S−
↓↓···↓(r1, . . . ,rK )= CK · (κ1κ2 · · ·κK )S0(r1, . . . ,rK ), (8.94)

where
κn =p

n tanϑn−1. (8.95)

Comparing (8.94) to (8.88) we find that S−
↓↓···↓(r1, . . . ,rK ) differs from S−

↑↑···↑(r1, . . . ,rK ) by (κ1κ2 · · ·κK ) standing
instead of (z1z2 · · · zK ). Analogously, the wave function with "↓" standing at s’th place can be obtained by replacing zs
by κs in (z1z2 · · · zK ). Therefore, the skyrmion K-body wave function appears as

S−
µ1···µK

(r1, . . . ,rK )= CK e−
1
2 (| z1|2+···+| zK |2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
z1
κ1

]
µ1

z1

[
z1
κ2

]
µ2

· · · zK−1
1

[
z1
κK

]
µK[

z2
κ1

]
µ1

z2

[
z2
κ2

]
µ2

· · · zK−1
2

[
z2
κK

]
µK

...
...

. . .
...[

zK
κ1

]
µ1

zK

[
zK
κ2

]
µ2

· · · zK−1
K

[
zK
κK

]
µK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (8.96)

We now turn to antiskyrmions which are constructed by adding one electron to |g〉 and then applying W-transformation
thus giving

|S+〉 = c†
↓(0)

{K−1∏
n=0

[
c†
↑(n)cosθn + c†

↓(n+1)sinθn

]}
c†
↑(K)|∅〉, (8.97)
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which in the limit of θn → 0 turns into the electron-excited state

|S+〉 → c†
↓(0)c†

↑(0) · · · c†
↑(K)|∅〉 = c†

↓(0)|g〉. (8.98)

Provided antiskyrmion comprises K +2 electrons, we introduce the (K +2)-body wave function

S+
µ1···µK+2

(r1, . . . ,rK+2)= 〈∅|ψµ1 (r1) · · ·ψµK+2 (rK+2)|S+〉. (8.99)

Dealing with the lowest Landau levels it is a common opinion that apart the factor of e−
1
2 (| z1|2+| z2|2+···+| zK |2) every

possible many-body wave function must depend on zs only, but not on z̄s, e.g. (8.96).
However, the antiskyrmion state (8.99) does not lead to a wave function with any reasonable structure like (8.96).

The expression for general K is technically difficult to write down. As an example we present the one for K = 2. Up
to certain multiplicative factors the corresponding 4-body wave function appears as

S+
↑↑↑↑ =S+

↓↓↓↓ = 0 , (8.100a)

S+
↓↑↑↑ = (z2 − z3)(z2 − z4)(z3 − z4) , (8.100b)

S+
↓↓↑↑ = (z1 − z2)(z3 − z4)

[
z3z4 − (z1 + z2)(z3 + z4)

]
, (8.100c)

S+
↓↓↓↑ = (z1 − z2)(z1 − z3)(z2 − z3)z2

4 , (8.100d)

where no reasonable order is seen.
In this respect skyrmions and antiskyrmions might be regarded to possess rather different properties. Actually,

this is not so, since the above scheme of dealing with antiskyrmions is not quite satisfactory. In order to clarify this
issue let us first carry out a comment on the skyrmion state (8.79). This state can be graphically represented as

e e e

0 1 2 K −1 K

where the symbol ! denotes the ξ-particle i.e. an electron shared by two neighbouring sites. We call such an
electron the site-transferable electron, since by manipulating with ϑn it can be transferred from one site to another.
Thus, the skyrmion state comprises K site-transferable electrons which in the many-body wave function (8.96) are
described in terms of K complex arguments.

Consider now the antiskyrmion state from the same point of view. The many-body wave function (8.97) comprises
K +2 arguments which at first sight seem to correspond to the number of electrons in the Fock state (8.99). On the
other hand, the graphical image of antiskyrmion appears as

e ee e e

0 1 2 K −1 K

where two electrons out of total K + 2 are pinned to n = 0 and n = K , i.e. cannot be transferred to neighboring
sites. So, though antiskyrmion is built up of K +2 electrons, it comprises only K site-transferrable electrons. Thus,
skyrmion and antiskyrmion Fock states comprise the equal number of the degrees of freedom, since the two pinned
electrons carry no degrees of freedom at all. However, antiskyrmion wave function defined by (8.99) involves K +2
complex arguments, which does not match the actual number of degrees of freedom. Nothing is wrong here, and
the answer to this mismatch is that the components of antiskyrmion many-body wave function are not independent,
but subject to certain functional relations. The most transparent manifestation of this statement are the relations
(8.100a). Though the approach is not wrong by itself, it is inconvenient to work with. All these difficulties disappear
if we develop a dual picture based on electron-hole symmetry. So far we used to construct the antiskyrmion Fock
state by creating electrons over the vacuum state. Dual picture deals with the same state via removing electrons
from completely filled system of K +1 sites.

Fock state of completely filled system is named as dual vacuum and we denote it as |∅̃〉. It is given by

|∅̃〉 =
[ K∏

n=0
c†
↑(n)

][ K∏
n=0

c†
↓(n)

]
|∅〉. (8.101)
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From this state we should remove the correct degrees of freedom so that the remnant ones would be exactly what
are comprised in the initial antiskyrmion state. In order to be clear we redraw the pictorial representation of anti-
skyrmion state in the following way

e ee e e

0 1 2 K −1 Kẽ ẽ ẽ

where the symbols ẽ denote electrons which should be added for filling out all vacancies. Say, there is one electron
shared by n = 1 and n = 2, i.e. these two sites have one vacancy, which is "orthogonal" to what is already occupied.
The shared electron is described by ζ†(1)= c†

↑(1)cosθ1+ c†
↓(2)sinθ1. In order to fill out the remnant vacancy shared by

n = 1 and n = 2, we should use the operator ζ̃(1) which is "orthogonal" to ζ(1), i.e. we should have {ζ(1), ζ̃†(1)}= 0. From
this restriction we find ζ̃(1) = c↑(1)sinϑ1 − c↓(2)cosϑ1. Repeating similar considerations we find that antiskyrmion
state can be brought up to the completely filled state by applying ζ̃†(0)ζ̃†(1) · · · ζ̃†(K −1) where

ζ̃(n)= c↑(n)sinϑn − c↓(n+1)cosϑn. (8.102)

Therefore, from the point of view of dual ground state we express the antiskyrmion state (8.97) as

|S+〉 =
K−1∏
n=0

[
c↑(n)sinϑn − c↓(n+1)cosϑn

]|∅̃〉. (8.103)

The state |∅〉 has been initially referred to as "vacuum" since it contains no electrons. In this connection the more
appropriate name would be "electron vacuum", while the state |∅̃〉 would be named as "hole vacuum" signifying that
it contains no holes since being completely filled by electrons. In this light we introduce the hole annihilation c̃µ(n)
and creation c̃†

µ(n) operators as

c̃↑↓(n)= c†
↓↑(n), (8.104a)

c̃†
↑↓(n)= c↓↑(n), (8.104b)

where the spin indices are interchanged: annihilating an up-aligned spin we thus create the down-aligned one. These
operators satisfy the standard anticommutation relation{

c̃µ(m), c̃†
ν(n)

}= δµνδmn, (8.105)

and the hole vacuum is annihilated as
c̃µ(m)|∅̃〉 = 0. (8.106)

Now the antiskyrmion Fock state (8.103) can be rewritten as

|S+〉 =
K−1∏
n=0

[
c̃†
↓(n)sinθn − c̃†

↑(n+1)cosθn

]
|∅̃〉, (8.107)

where the analogy with skyrmion state (8.80) is manifest.
In response to (8.104) we introduce the hole field operators ψ̃↑↓(r)=ψ†

↓↑(r) or equivalently

ψ̃µ(r)= (2π`2)−
1
2 e−

1
2 |z|2

K∑
n=0

αn z̄n c̃µ(n), (8.108)

where
p

2 z̄ = `−1(x− i y).
Now the antiskyrmion many-body wave functions is defined as

S+
µ1···µK

(r1, . . . ,rK )= 〈∅̃|ψ̃µ1 (r1) · · ·ψ̃µK (rK )|S+〉, (8.109)

and contains K complex variables corresponding to K holes.Thus the nonphysical degrees of freedom associated with
two nontransferable electrons do not appear at all, since those two electrons are accounted within the hole ground
state |∅̃〉.
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Using the resemblance between (8.107) and (8.80) it is straightforward to write down the K-body wave function
(8.109) once the expression (8.96) is already obtained. We thus have

S+
µ1···µK

(r1, . . . ,rK )= C̃K e−
1
2 (| z1|2+···+| zK |2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
z̄1
κ̃1

]
µ1

z̄1

[
z̄1
κ̃2

]
µ2

· · · z̄K−1
1

[
z̄1
κ̃K

]
µK[

z̄2
κ̃1

]
µ1

z̄2

[
z̄2
κ̃2

]
µ2

· · · z̄K−1
2

[
z̄2
κ̃K

]
µK

...
...

. . .
...[

z̄K
κ̃1

]
µ1

z̄K

[
z̄K
κ̃2

]
µ2

· · · z̄K−1
K

[
z̄K
κ̃K

]
µK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (8.110)

where

C̃K = (−1)K (2π`2)−
K
2 (α1α2 · · ·αK )

K−1∏
n=0

cosθn, (8.111)

and
κ̃n =−pn tanθn−1. (8.112)

In final we comment on special type of skyrmions with the scale parameters set by: κn = κ and κ̃n = κ̃, or equiva-
lently

tanϑn = κp
n+1

, (8.113a)

tanθn = −κ̃p
n+1

. (8.113b)

In that case the K-body wave functions (8.96) and (8.110) are reduced to

S−
µ1···µK

(r1, . . . ,rK )= CK

{
K∏

n=1

[
zn
κ

]
µn

}
S0(r1, . . . ,rK ), (8.114a)

S+
µ1···µK

(r1, . . . ,rK )= C̃K

{
K∏

n=1

[
z̄n
κ̃

]
µn

}
S0(r1, . . . ,rK ), (8.114b)

where the spin part is factorized, and we name these configuration as "factorizable skyrmions".
In the next section we consider the factorizable skyrmions more in details in connection with the hard-core model.

Problems

(8.a) Derive (8.8) from (8.6).

(8.b) Derive (8.9) from (8.8).

(8.c) Derive (8.11) from (8.6).

(8.d) Employ (8.11) and derive (8.12).

(8.e) Verify that (8.69) substituted into (8.61b) lead to (8.68); verify the normalization (8.61a).

(8.f) Verify that (8.73) substituted into (8.61b) lead to (8.72); verify the normalization (8.61a).



Chapter 9

HARD-CORE AND COULOMB INTERACTIONS

Skyrmions contain infinitely many parameters ϑn and θn which are to be fixed to minimize the energy of the state.
In the given subsection we carry out this programme for the hard-core interaction

V (r1 − r2)= δ(r1 − r2), (9.1)

and subsequently briefly comment on Coulomb interaction

V (r1 − r2)= α

|r1 − r2|
. (9.2)

Also, we will include the Zeeman term.

9.1 Hard-Core Interaction

In the case of a hard-core interaction the Hamiltonian (7.1) reads

He = 1
2

∫ [
ρ(r)−ρe

][
ρ(r)−ρe

]
dr. (9.3)

Remind that ρe serves for electric neutrality of the system in the ground state. Therefore the quantity Ng ≡
∫
ρedr

coincides with total number of particles in the ground state. On the other hand, the quantity N ≡ ∫
ρ(r)dr is the

operator counting the number of particles in a Fock state. Besides we consider the system at ν= 1 i.e. ρe = (2π`2)−1.
We then rewrite (9.3) as

He = 1
2

∫
ρ(r)ρ(r)dr− 1

2π`2N+ 1
4π`2Ng =

= 1
2

∫ [
ψ

†
↑(r)ψ↑(r)+ψ†

↓(r)ψ↓(r)
][
ψ

†
↑(r)ψ↑(r)+ψ†

↓(r)ψ↓(r)
]
dr− 1

2π`2N+ 1
4π`2Ng. (9.4)

Writing out the density operators explicitly ρ =ψ†
↑ψ↑+ψ†

↓ψ↓ and using here ψ↑(r)ψ↑(r)=ψ↓(r)ψ↓(r)= 0 together with

{
ψµ(r),ψ†

ν(r)
}= δµν

2π`2 , (9.5)

we come to
He =

∫
ψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r)dr− 1
4π`2 (N−Ng). (9.6)

In terms of creation and annihilation operators this appears as

He = 2
∑

mni j
Vmni j c†

↑(m)c†
↓(i)c↓( j)c↑(n)− 1

4π`2 (N−Ng). (9.7)

Fourier transform of the potential is given by V (k) = (2π)−1. Then the matrix elements Vmnst can be calculated
via (7.8) and by use of (2.19.14.6) [Prudnikov, vol.2] to give

Vmnst = 1
8π`2

p
(m+ s)!p

m!s!

p
(n+ t)!p

n!t!

δm+s,n+tp
2m+s+n+t

. (9.8)
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We now calculate the matrix element of (9.7) with respect to k-skyrmion Fock state. Using the relations (8.51)
and (8.52) we write

〈Sq
−|c†

↑(m)c†
↓(i)c↓( j)c↑(n)|Sq

−〉 = cosϑm−q sinϑi sinϑ j cosϑn−q〈Sq
−|ξ†(m− q)ξ†(i)ξ( j)ξ(n− q)|Sq

−〉 =

= cosϑm−q sinϑi sinϑ j cosϑn−q(δmnδi j −δm, j+qδn,i+q). (9.9)

We then obtain

〈Sq
−|He|Sq

−〉 =
1

4π`2

∑
mn

(m+n)!
m!n!

1
2m+n cos2ϑm−q sin2ϑn−

− 1
4π`2

∑
mn

√
(m+n+ q)!√
(m+ q)!n!

√
(m+n+ q)!√
(n+ q)!m!

1
2m+n+q cosϑm sinϑn sinϑm cosϑn+

+ q
4π`2 , (9.10)

where the last term reflects the extra number of electrons in q-skyrmion state to be 〈Sq−|N|Sq−〉−Ng =−q.
Recalling the convention cosϑm = 0 for m < 0, we first shift the summation index m as m → m+ q and then

rearrange into

〈Sq
−|He|Sq

−〉 =
1

8π`2

∑
mn

(m+n+ q)!
2m+n+qm!n!

[ p
m!√

(m+ q)!
cosϑm sinϑn −

p
n!√

(n+ q)!
cosϑn sinϑm

]2

+ q
4π`2 . (9.11)

First term of this expression being non-negative takes the minimal value for
p

m!√
(m+ q)!

cosϑm

sinϑm
=

p
n!√

(n+ q)!

cosϑn

sinϑn
, (9.12)

hence the involved combinations must be a site-independent constant

1
ωq ≡

p
n!√

(n+ q)!

cosϑn

sinϑn
= const, (9.13)

where ω is an arbitrary real constant, which specifies the size of skyrmion.
Provided the skyrmion with (9.13) produces the absolute minimum of the energy, it must be the eigenstate of the

hard-core Hamiltonian. Indeed, with the help of (8.51) and (8.52) we verify ψ↓(r)ψ↑(r)|Sq−〉 = 0 provided the relations
(9.13) are held. Consequently, we have

He|Sq
−〉 =

q
4π`2 |Sq

−〉, (9.14)

what also implies that the energy is independent of the scale parameter ω. The energy of a skyrmion (9.14) consists
of direct and exchange pieces (ED +EX ). In general, the direct interaction supports large sizes in order to smear the
charge over larger area, thus lowering the direct interaction energy. In contrast, the exchange interaction supports
small sizes hence attempts to shrink the skyrmion. In the case of hard core interaction these rivaling effects cancel
out each other and the total energy (ED +EX ) becomes scale-insensitive. Such cancelation is no longer the case for
other interaction (say for Coulomb) types and the optimal size of an excitation is formed.

Remark, that the factorizable skyrmion introduced in section (8.9) by (8.108) represents the particular case of
(9.13) with q = 1 and ω= κ.

In previous sections we derived the expression for NC CP1 field related with q-skyrmion state. We now study
that expression by taking into account the relation of factorizability (9.13).

We start by the corresponding Weyl operators given by (8.69)

O[ f −↑ ]=
∞∑

n=0
cosϑn|n+ q〉〈n|, (9.15a)

O[ f −↓ ]=
∞∑

n=0
sinϑn|n〉〈n|. (9.15b)
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As a matter of (3.16) we have

(b†)q|n〉 =
√

(n+ q)!p
n!

|n+ q〉, (9.16)

what leads to

(b†)qO[ f −↓ ]=
∞∑

n=0
sinϑn

√
(n+ q)!p

n!
|n+ q〉〈n|. (9.17)

Here we use (9.13) and comparing then with (9.15a) come to

(b†)qO[ f −↓ ]=ωqO[ f −↑ ]. (9.18)

Remind here that b† = O[z] where
p

2`z = x+ i y. Also, we have z? zq = zq+1. Then the above relation is equivalent
to

zq? f −↓ (r)=ωq f −↑ (r), (9.19)

and the NC CP1 field appears as

f −(r)= 1
ωq

 zq

ωq

? f −↓ (r), (9.20)

where in accord with (8.70b) f −↓ (r) is the function of r only

f −↓ (r)= 2e−r2/`2 ∞∑
n=0

(−1)n sinϑnLn(2r2/`2). (9.21)

Remark, that we came to the structure with the spin part factorized as in (8.109). It is also remarkable that (9.20)
resembles the structure of the ordinary (commutative) CP1 field which looks as

f (r)= 1√
|z|2q +ω2q

 zq

ωq

 . (9.22)

Finally, we calculate the physical densities ρcl(r) and Icl
a (r) for the factorizable multi-skyrmion state. From (9.13)

we have

sin2ϑn = ω2q

ω2q + [(n+1) · · · (n+ q)]
, (9.23a)

cos2ϑn = (n+1) · · · (n+ q)
ω2q + [(n+1) · · · (n+ q)]

. (9.23b)

Substituting these into (8.56) we obtain the physical densities ρcl(r) and Icl
a (r) describing q-skyrmion states to be

ρcl(r)= 1
2π`2

[
( 1

2`
−2r2)q +ω2q

]
Fq( 1

2`
−2r2), (9.24a)

Icl
x (r)= +cos(qφ)

2π`2

[
ωrp
2`

]q

e−
1
2 `

−2r2
Fq( 1

2`
−2r2), (9.24b)

Icl
y (r)= −sin(qφ)

2π`2

[
ωrp
2`

]q

e−
1
2 `

−2r2
Fq( 1

2`
−2r2), (9.24c)

Icl
z (r)= 1

4π`2

[
( 1

2`
−2r2)q −ω2q

]
Fq( 1

2`
−2r2), (9.24d)

where Fq(x) is given by

Fq(x)= e−x
∞∑

n=0

1
[(n+1) · · · (n+ q)]+ω2q

xn

n!
, (9.25)

and φ is the azimuthal angle.
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Expressions (9.24) carry the structure
Icl

a (r)= ρcl(r)Ia(r), (9.26)

where the field Ia(r) is given by

Ix(r)= +(
p

2`ωr)q

r2q + (2`2ω2)q cos(qφ), (9.27a)

Iy(r)= −(
p

2`ωr)q

r2q + (2`2ω2)q sin(qφ), (9.27b)

Iz(r)= 1
2

r2q − (2`2ω2)q

r2q + (2`2ω2)q . (9.27c)

Being normalized as

Ia(r)Ia(r)= 1
4

, (9.28)

it represents the ordinary (commutative) O(3) skyrmion: compare to (6.9).
Summarizing, the factorizable skyrmions represent the particular case where in addition to the general NC

properties (5.33) satisfied by core fields, we also have the commutative normalization of physical spin fields. The later
fact is the peculiarity of factorizable skyrmions and does not reflect any general property. The factorized structures
(8.109) and (9.20) are also the property of the given particular case and does not occur in general case.

Though, the factorizable skyrmions exhibit interesting structures, it becomes inconsistent once the Zeeman in-
teraction is turned on. The later reads as HZ =−∆Z

∫
Iz(r)dr where ∆Z is the Zeeman gap energy. Zeeman energy

of the excitation is calculated as

∆EZ = 〈S−|HZ |S−〉−〈g|HZ |g〉 =−∆Z

∫ [
Icl

z (r)− 1
4π`2

]
dr, (9.29)

where (4π`2)−1 is the ground state value of Scl
z (r).

For a single-skyrmion state (q = 1) the function (9.25) can be expressed as

F(z)= 1
ω2 +1

e−zM
(
ω2 +1;ω2 +2; z), (9.30)

where M(a;b; z) is the Kummer function. Using its properties we find the asymptotic behaviour (z →∞) for ω 6= 0 to
be

F(z) → 1
z
− ω2

z2 + ω2(ω2 −1)
z3 +·· · . (9.31)

Consequently, for ω 6= 0 we obtain

Icl
z (r) → 1

4π`2 − ω2

πr2 +O(r−4), (9.32)

as r →∞. Using this relation in (9.29) we find the Zeeman energy diverges logarithmically. Zeeman energy is finite
only for ω= 0, i.e. when skyrmion turns into a hole configuration Icl

z (r)= (4π`2)−1(1− e−r2/2`2
).

Summarizing, once the Zeeman interaction is turned on, the factorizable skyrmion is no longer valid in the hard-
core model. There surely exists a different kind of skyrmion with a finite Zeeman energy, but this would be not
a factorizable one. Even for a non-factorized skyrmion, we can show that the hole state has the lowest energy:
factorizable skyrmion is the lowest energy eigenstate of the hardcore Hamiltonian. Therefore, any other state |S〉
with the same electron number 〈S|N|S〉−Ng =−q has higher energy 〈S|He|S〉 Ê q

4π`2 . Further, its Zeeman energy
is larger than that of a hole, 〈S|HZ |S〉 Ê 1

2∆Z . Hence

〈S|(He +HZ)|S〉 Ê q
4π`2 + 1

2
∆Z , (9.33)

where the equality holds for the hole state. Consequently, in the presence of the Zeeman interaction there are no
skyrmions in the hard-core interaction, so the only excitations are the hole configuration.
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9.2 Coulomb Interaction

We briefly comment on the realistic system governed by the Coulomb potential

V (r1 − r2)= α

|r1 − r2|
. (9.34)

As pointed out in previous section the direct energy supports large sized excitation, while the exchange interaction
tries to shrink it as much as possible. In the case of hard-core potential these effects canceled out each other and the
total energy was scale-independent. For the Coulomb interaction such cancelation is no longer the case and the total
energy is scale-dependent.

In this case it is practically impossible to construct a skyrmion as an eigenstate of the interaction Hamiltonian,
so one has to estimate the excitation energy of a skyrmion by minimizing the total energy (expectation value of He)
with respect to the scale parameter. Such an attempt has been carried out by Fertig et. al. (PRB 50, 1994) in a model
without Zeeman interaction.

As argued in previous section, inclusion of the Zeeman interaction led to logarithmic divergences. The matter is
that skyrmions set by (9.13) exhibits polynomial suppression at spatial infinity what is not sufficient to produce finite
Zeeman energy. As a way out of this problem one can modify the parameters ϑn so to endow the classical fields with
exponential suppression at spatial infinity. Such configurations possess finite Zeeman energy and may be considered
as a possible candidate for realistic quantum Hall skyrmion. Surely, this won’t be the factorizable skyrmion. In this
scope one can put for a single-skyrmion state

sinϑn = ωtn+1
p

n+ω2 +1
, (9.35)

where the parameter t implements the interpolation between the hole (t = 0) and the factorizable skyrmion (t = 1).
It is evident that the given ansatz satisfies the condition cos−1 = 0 so the results obtained in previous sections can be
directly applied.

The z-component of spin field appears now as

4π`2Icl
z (r)= 1− e−(1−t2) r2

2`2 M
[
1;ω2 +1;− t2r2

2`2

]
− t2ω2

ω2 +1
e−(1−t2) r2

2`2 M
[
1;ω2 +2;− t2r2

2`2

]
, (9.36)

where M(a;b; z) is the Kummer function.
From the asymptotic properties of Kummer functions we find that Icl

z (r) approaches the ground state value expo-
nentially

Icl
z (r) → 1

4π`2 − ω2

2πr2

[
1+ 1

t2

]
e−(1−t2) r2

2`2 , (9.37)

and therefore the corresponding Zeeman energy is now convergent. As expected, exponential suppression turns into
the polynomial one when t → 1.

Hence the energy of a skyrmion comprises two (ω and t) parameters and minimization must be carried out with
respect to both of them. This cannot be done analytically and one has to employ numeric calculations. Omitting all
the details we bring only the final results.

Minimization is carried out for different values of ∆Z . In such a way we obtain the excitation energy as a function
of the Zeeman coupling, what is subsequently compared to the experimental data by Schmeller et al. (PRL 75, 1995).

Comparing theoretical results with experimental data, two points are usually taken into account. First, excita-
tions occur in the presence of charged impurities, which reduce the excitation energy. We include an offset parameter
Γoffset to treat this effect phenomenologically. Second, we have so far assumed an ideal two-dimensional space for
electrons. This is not the case and electrons are confined within a quantum well of a finite width. This modifies the
Coulomb energy which becomes smaller than what we have assumed. It is quite difficult to make rigorous analysis of
the Coulomb energy in an actual quantum well. This effect is usually taken into account by including the reduction
factor for the Coulomb energy.

However, theoretical data come in good agreement with the experimental ones even without the Coulomb energy
reduction. One only needs to involve the offset parameter

Egap → Egap −Γoffset . (9.38)

Experimental data were obtained in three samples (figure 9.1): a single heterointerface (F) and two GaSa single
quantum wells (G,W and Y) with widths of 20nm and 14nm. The sample F has much wider thickness of the two-
dimensional sheet. In figure 9.1 the sample mobilities (planar density of free electrons) are 3.4, 0.52, 0.18, and 0.16
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Fig. 9.1: Skyrmion excitation energies and Zeeman coupling are measured in units of the Coulomb scale EC = α/`. Applying the
parallel magnetic field, the Coulomb energy is not affected since it depends only on the orthogonal component B⊥, while
the electron spin feels the total magnetic field (B2

⊥+B2
∥ )

1
2 what results in the increase of Zeeman interaction. In this way

experimentalists manipulate with Zeeman coupling what enables to study spin effects in quantum Hall systems.

(×106cm−2), respectively. Theoretical results successfully fit the experimental data by the appropriate choices of the
offset parameter Γoffset in figure 9.1. Different values of Γoffset are used for different samples.
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